
x 设计模式

应用场景举例

摘要

正文

设计模式（Design Pattern）是前辈们对代码开发经验的总结，是解决特定问题的

一系列套路。它不是语法规定，而是一套用来提高代码可复用性、可维护性、可读性、

稳健性以及安全性的解决方案。

设计模式根据目的可以分为创建型模式、结构型模式和行为型模式 3 种，其中创

建型模式用于描述“怎样创建对象”，它的主要特点是“将对象的创建与使用分离”。GoF

中提供了单例、原型、工厂方法、抽象工厂、建造者等 5 种。结构型模式用于描述如

何将类或对象按某种布局组成更大的结构，GoF 中提供了代理、适配器、桥接、装饰、

外观、享元、组合等 7 种结构型模式。行为型模式用于描述类或对象之间怎样相互协

作共同完成单个对象都无法单独完成的任务，以及怎样分配职责。GoF 中提供了模板方

法、策略、命令、职责链、状态、观察者、中介者、迭代器、访问者、备忘录、解释器

等 11 种行为型模式。

设计模式还可以根据作用范围分为类模式和对象模式，其中类模式用于处理类与子

类之间的关系，这些关系通过继承来建立，是静态的，在编译时刻便确定下来了。GoF

中的工厂方法、（类）适配器、模板方法、解释器属于该模式。对象模式用于处理对象

之间的关系，这些关系可以通过组合或聚合来实现，在运行时刻是可以变化的，更具动

态性。GoF 中除了以上 4 种，其他的都是对象模式。

单例模式

定义: 一个类只有一个实例, 且该类能自行创建这个实例的一种模式.

优点: 由于单例模式只允许创建一个对象，共享该对象可以节省内存，并加快对象

访问速度。

例子: 网站计数器/ 数据库连接池. 我们需要统计网站的访问人数, 用单例模式

实现了一个计数器类, 该类只创建一个可共享的对象, 实现了网站访问人数统计功能.

抽象工厂

定义: 抽象工厂模式提供一个接口，可以创建一系列相关或相互依赖的对象.

优点: 用户只需要知道具体工厂的名称就可得到所要的产品，无须知道产品的具体

创建过程; 灵活性增强，对于新产品的创建，只需多写一个相应的工厂类。

例子: 可以针对 Oracle、MySQL、DB2 等分别建立抽象工厂，如指定当前工厂为

Oracle 工厂，则创建出来的数据库连接，数据集等一系列的对象都是符合 Oracle 操作

要求的，这样便于数据库之间的切换.

责任链模式

定义: 为了避免请求发送者与多个请求处理者耦合在一起，将所有请求的处理者通过前

一对象记住其下一个对象的引用而连成一条链；当有请求发生时，可将请求沿着这条链传递，



直到有对象处理它为止.

优点: 客户只需要将请求发送到责任链上即可，无须关心请求的处理细节和请求的传递

过程，所以责任链将请求的发送者和请求的处理者解耦了; 可扩展性; 灵活性; 责任分担;

例子: 点线面三种空间矢量数据的处理, 定义的坐标系不同, 附加操作不同, 点的话

增加 POI 统计数, 线的话增加路段数量, 面的话增加用地数量, 处理后保存到各自对应的

坐标系数据集.

适配器模式

定义: 将一个类的接口转换成客户希望的另外一个接口，使得原本由于接口不兼容而不

能一起工作的那些类能一起工作。

例子: 监控摄像头有多种品牌, 每种类型摄像头有既有的驱动组件, 用于控制摄像头开/
关机, 镜头旋转, 变焦等功能, 但是这些组件接口不一, 想要统一操作接口, 用适配器模式

实现. 定义一个目标接口, 在给每种品牌摄像机分别定义一个适配器类, 适配器类实现目标

接口, 并继承既有驱动, 实现客户端对目标接口的透明调用.

策略模式

定义: 该模式定义了一系列算法，并将每个算法封装起来，使它们可以相互替换，且算

法的变化不会影响使用算法的客户。

优点: 多重条件语句不易维护，而使用策略模式可以避免使用多重条件语句。

例子: 坐标系的转换, 高德/ 百度/ 标准 wgs84 , 如原始空间数据的坐标系为高德坐标,
需要转换为其它坐标系, 定义一个抽象策略类和两个具体策略类, 具体策略类 A—标准转高

德, 具体策略类 B—标准转百度, 还有一个环境类, 持有一个策略类的引用, 最终给客户端

调用.


	应用场景举例

