
软件工程 信息技术与信息化

38　　　 2008年第 1期

软件的性能设计
ThePerformanceDesignofSoftware

崔晓东＊　曹彤宇

CUIXiao-dong　CAOTong-yu

摘　要 　本文概要介绍了大型软件系统性能设计的误区 , 指出性能设计应该是设计过程的一个必备环节。根据

实际的性能设计经验 ,作者提出了性能设计的基本要求和主要方法。

关键词 　软件　性能设计　架构设计

　　Abstract　Thisarticlesummarilyintroducedthemisunderstandingfortheperformancedesignofalargesoft-

waresystem, andpointedoutthattheperformancedesignshouldbeanecessarystepinthedesignprocess.The

authorsdiscussedthefundamentalrequirementsandmajormethodsaboutperformancedesign, accordingtotheir

practiceexperiences.

Keywords　Software　PerformanceDesign　ArchitectureDesign

＊上海南康科技有限公司　200030

1　序言

对于大型应用系统而言 ,系统的性能显得极为重要。这里的

性能主要指稳定性和运行速度。功能再强 , 而性能很差 , 频繁宕

机 , 系统便失去了可用性。因此 , 性能设计是软件中必不可少的

组成部分。本文结合笔者在大型 B/S架构应用系统的设计经验 ,

谈一谈软件性能设计的基本方法。

2　性能设计的误区

关于软件的性能设计 ,通常有两个误区:

第一个误区:性能问题可以依靠更好的计算机硬件和系统软

件来解决。

在设计系统前 , 系统设计师得到的信息可能是:不用担心软

硬件问题 , 我们用的都是最好的。而实际可能的结果是:内存不

够就加大 , PC服务器不行就换小型机 , Windows操作系统不行就

改为 Linux或者 UNIX, 但出现的性能问题却不一定有显著的改

观。

事实上这种做法是很盲目的 ,要知道无论什么编程语言都可

以写出让系统崩溃的程序来。

第二个误区:系统的性能可以通过系统优化来实现。

通常的做法是先不管性能 , 尽快实现功能 , 等到系统测试或

试运行的时候再调优 。其实 , 这个做法是不可取的。因为系统优

化是一种事后行为 , 依靠的是数据库 、应用服务器的调优能力 , 虽

然能在一定程度上解决问题 ,但是一旦遇到它们也无能为力的情

况 , 我们就需要花费巨大的代价来解决。

这两个误区产生的后果往往都是事后补救的时候才发现无

可奈何 ,因为没有事先建立起性能问题的预防机制。

有句话说得好:设计使然! 有什么样的设计就有什么样的结

果 ,没有设计就别指望会有满意的结果。好的性能也是设计出来

的。因此真正可取的做法是在软件设计的过程中完成性能设计 ,

而不仅仅是在测试或试运行的过程中调试 , 测试过程或试运行过

程应当是检验性能设计效果的过程。

3　性能设计的基本要求

孙子兵法云:知己知彼 , 百战不殆。

首先 ,必须了解性能目标。

性能目标源于用户需求 ,但这些需求往往是隐藏的或是潜在

的需求 ,如果没有被识别出来 , 可能就会被设计师所忽略。

对于大型的 B/S架构的应用系统 ,设计师应注意弄清楚以下

一些基本问题:

3.1　数据形态 、数据规模和增长速度

数据是以文件形式居多还是以数据库形式居多? 这决定了

数据的访问效率 ,以及是否需要专门的文件服务器或数据库服务

器。

数据是集中存储还是分散存储? 集中存储有利于集中管理 ,

但服务器的压力较大 ,这时需要重点考虑服务器的运行效率。而

分散存储虽然可以缓解服务器压力 , 但是会增加数据同步的难

度 ,影响数据交换的质量 , 这时需要提高设计质量以避免数据损

失。

总的数据量在怎样的数量级? 记录数是十万 、百万 、千万还

是更多? 这个数量级决定了应该选择什么样的数据库系统 , 以及

需要在多大程度上考虑性能设计。记录数较少 , 一般的数据库服

务器都可以轻松应付 , 但是对于千万级的记录量 , 就要综合运用



信息技术与信息化 软件工程

2008年第 1期 39　　　

多种设计方法了。

数据的增长速度怎样? 每天或每月会以怎样的一个数量级

增长? 这个数量级决定了应重点设计性能的哪个方面。 对于生

产型系统(以采集数据为主), 数据的增长速度较快 ,应重视设计

其存储效率;对于决策支持型系统(以统计分析为主), 数据常以

静态方式存在 , 应重点设计其检索效率。 数据的增长速度还决定

了系统在多久后必须考虑扩容 , 以及应该准备什么样的备份策

略。

3.2　用户的数量

设计师应当清楚系统有多少现实的和潜在的用户。用户数

量在一定程度上决定了系统现实的压力情况和未来可能的压力

情况。如果用户数量上千甚至上万 ,就要重视在应对访问压力方

面的性能设计了。

3.3　系统的并发访问量

系统运行速度变慢甚至宕机往往是发生在并发访问量较高

的时候。因此 , 有必要弄清楚并发访问量发生在每天的哪个时

段 , 最高能够达到多少 , 突发情况会达到多少。这几个数值是性

能设计的依据 , 也是性能测试的依据。

对于一个生产型系统而言 ,有 24小时持续压力的 , 但是多数

都是 8-12小时的。如果某几个时段压力过大 , 可以考虑让用户

分时段使用系统 , 将压力分摊到不同时段去。

3.4　网络状况

网络状况常常被忽视。通常 , 在开发环境下 , 网络状况都是

理想的 , 网速很快很稳定。但是在实际环境下并非如此 , 因为网

络上需要部署各类防火墙 、入侵检测 、防病毒等软硬件 , 网速和稳

定性上会受到一定程度的影响。 在理想条件下做出的设计可能

不会满足实际的需要 。

如果网络状况不好 ,意味着用户不见得能够正常完成系统的

某些操作。这时 , 设计师应加强系统的容错性设计 , 避免数据的

异常丢失。

其次 , 要清楚地了解系统运行的软 、硬件环境。

这些环境就如同战场上的地形 ,如果对地形不熟悉就不容易

发挥地形的优势 , 弄不好还会陷入不利境地。如果系统需要在不

同的环境下运行 , 那么还必须注意环境之间的差异。

具体地说 , 设计师应注意以下关于运行环境的问题:

3.5　操作系统

在 Java平台上 , 比较常见的开发方式是:在 Windows操作系

统上开发 , 然后移植到 Linux或者 Unix操作系统上运行。前者可

以保证开发效率 , 后者则可提高安全性和运行效率 , 但是应事先

了解操作系统之间的差异 ,否则会遭遇难以逾越的障碍。

比如 , 很多 Linux和 Unix操作系统都不安装窗口系统 , 甚至

完全是西文的。 如果你在 Windows环境下所做的设计恰好用到

了窗口系统的功能(如图形 、字体), 移植到这样的 Linux或 Unix

环境下就会出现异常。

此外 ,它们与 Windows操作系统默认的字符集也不同 , 这会

影响到文件的读写。

3.6　数据库

如果要设计一个适用于不同数据库类型(如 Oracle和 SQL

Server)的系统 , 可移植性是设计师必须面对的问题 , 特别要注意

这些数据库之间的差异 ,在 SQL语法和所使用的函数方面可能会

引起问题。如果确实必须用到它们的特性 , 就有必要提供一个集

中处理这种差异的机制。

另外一个需要重视的是数据库的字符集。使用中文字符集

还是西文字符集 ,如果标准不统一可能会导致乱码出现 , 这就是

一个正确性的问题了。

3.7　应用服务器

应用服务器(如 WebLogic、Tomcat)虽然原理上基本相同 , 但

性能上却各有千秋。

在选定应用服务器类型的情况下 ,应注意发挥其优势 , 充分

利用其性能调优的功能 , 同时避免其短处 , 不要让系统的缺陷影

响系统性能。

再好的应用服务器 ,也是人一行一行代码写出来的 , 因此 , 它

难免存在一些缺陷。很多应用服务器的补丁一打再打 ,多数是解

决各类性能问题的。设计师应了解这些缺陷 , 从而避免掉入 “陷

阱”。

再次 ,要掌握必要的设计方法和辅助工具。

“工欲善其事 , 必先利其器 ”, 借助常用的设计方案和辅助工

具 ,可以使得设计师的工作更有效。对于一些常见的性能问题 ,

都有一些通用的设计方案 , 就如同下棋中的 “定式” , 了解这些方

案有助于提高工作效率。

计算机技术发展至今 , 对于常见的具体问题 , 已经积累了大

量成熟的算法 、组件和工具 , 设计师要能够活学活用这些知识 , 把

它们组合起来 ,发挥更大的威力。

同时 ,也要求设计师具有一定的分析和计算能力。

其实 ,运算速度是可以计算出来的。众所周知 , 快速排序算

法在大多数情况下比冒泡排序算法更快 , 这不光是实验的结果 ,

还是理论计算的结论。

这要求设计师具备一定的数学知识 , 具备一定的推理能力。

在这一点上不像数学本身那样严格要求准确 ,只要理论值接近实

际值即可 ,这样可以估计出系统在真实环境下的性能情况。

4　性能设计的主要方法

有了性能目标和运行环境 ,剩下的就是我们如何发挥主观能

动性 ,借助 “地利”,给出创造性的设计方案了。

4.1　要消除影响性能的结构性问题

前面分析了可能影响系统性能的各种因素 , 有些只影响到系



软件工程 信息技术与信息化

40　　　 2008年第 1期

统的局部 , 而有些则会影响全局。这些影响全局的因素会造成结

构性问题 , 这些因素必须被首先消除。

结构性问题是致命的 , 就如同一幢楼房 , 如果整体结构上有

问题 , 不但会有大厦将倾的风险 , 甚至根本无法建立起来这个系

统。关于这一点 , 在运行环境和系统压力方面尤其要注意。

对于影响系统性能的因素 , 可以按照重要程度从高到低排

序 , 优先解决那些重要程度较高的问题。

4.2　要分析并找出可能的性能瓶颈

这些瓶颈是性能设计的关键部位 , 通常是在局部发挥作用。

应着重找出那些被频繁访问或运行复杂数据处理的部分 , 改进这

些部分设计可以达到事半功倍的效果。

在 B/S架构的应用系统中 ,以下情况可能产生性能瓶颈:

○数据库中关联的表过多(如超过 5个)或者一次要求返回

的记录数太多(如超过 1000条)可能会在数据库运算方面产生瓶

颈 , 因为表的关联会导致指数级增长的笛卡儿积运算 , 遍历太多

的记录也比较费时。

○应用服务器中的共享资源(如数据库连接池 、线程池 、缓

存)在高并发条件下可能会产生访问冲突的瓶颈。在 Java语言

中 , 有比较著名的 “线程死锁 ”, 应用服务器会因此宕机。 在高并

发条件下 , 应借助一些辅助方法 , 才能有效解决这个问题。

○一次请求返回的数据量太大(比如超过 2兆字节)可能会

产生网络传输的瓶颈 , 速度会明显变慢。如果数据量确实较大 ,

则需要考虑使用压缩技术。

4.3　将特定的性能问题分解到不同的系统组件来解决

在典型的 B/S架构下 , 数据需要流经客户端 、网络 、应用服务

器 、数据库服务器等诸多环节 , 任何一个环节压力过大都可能造

成阻塞。

一般地 , 当客户端发出一个请求 ,用户可以接受的等待时间

也就是 3到 5秒钟。任何阻塞都可能会延长等待时间。因此 , 对

于那些频繁使用的功能 ,系统应在数据流经的每个环节上进行优

化设计 , 以提高总体响应速度。

笔者就曾经遇到这样一个例子。某个大数据量的统计功能 ,

设计师把计算功能完全交给数据库 , 写了 400多行的 SQL语句 ,

耗时数分钟才给出计算结果。后改为在应用服务器中执行两条

简单的 SQL语句并组装数据 , 数据库服务器仅负责基本数据的提

取 , 应用服务器负责数据的转换 , 整个过程耗时只有几十毫秒 , 速

度提高了好几个数量级。

“平衡才健康”, 在性能设计中尤其如此。

4.4　建立模型

做性能设计也需要做试验 ,越是规模大的系统越是需要这个

步骤。试验的对象就是为此建立的模型。

模型是基于理论创建的 , 它瞄准的是系统的设计目标 , 依托

的是系统的运行环境 , 并综合运用了各种数据结构 、通用的或定

制的算法和处理模式 , 因此是为特定系统量身订做的 , 我们甚至

可以计算出模型定量的性能指标 ,在理论上具有一定的可靠性。

对于软件系统 ,已经有很多成熟的模型可供参考。但是正如

世界上找不到两片相同的叶子一样 , 每个软件系统都有其个性 ,那

些成熟模型只能作为局部的参考 ,需要在其基础上进一步改进。

实践是检验真理的唯一标准 ,对于建立的模型还需要不断地

做试验。试验的目的就是检验模型能够在多大程度上满足性能

设计要求 ,从而进行不断地改进。这样的模型才是稳定可靠的 ,

是能够经得起考验的。

你可能会问:现在软件开发追求的是效率———以最快的速度

完成系统建设 ,如果试验这样做下去 , 系统什么时候才能上线啊?

事实证明:磨刀不误砍柴工。 真实的运行环境不是试验场

所 ,那时再出问题 , 延误的将不仅仅是工期!

4.5　应避免掉入系统软件固有缺陷的 “陷阱”

任何软件都会有长处 ,设计师应设法让这些长处得到充分发

挥。任何软件也都难免有缺陷 ,设计师要做的是预防这些缺陷发

挥作用 ,如果控制不好会有适得其反的结果 。

笔者在这方面吃过苦头。我们在 2006年设计上海市房屋土

地资源管理局某大型 B/S架构的业务系统时 ,上线运行时发生断

断续续的宕机情况。由于 “相信”系统软件的性能 “应该不会有问

题”,我们一直从自身设计上找原因。

这个系统的用户量超过一万 , 数据量是千万记录级的 , 还跟

其他几个系统有接口 ,因此开始的时候我们怀疑是系统无法承受

压力所致 ,所以不断优化算法 , 进行持续的压力测试 , 但耗时良久

却状况依旧。事实上 , 经不断观察我们发现:系统在每次宕机前

压力并不大 ,应该不是压力造成的。

最终我们把怀疑的目光放在系统软件上 ,原来是应用服务器

软件的一个自身缺陷造成的 ,打上最新的补丁之后再也没有宕过

机。我们花了四个月完成了系统的开发 , 却花了六个月才查出这

个问题 ,这笔学费可真是够高的!

有鉴于此 , 设计师必须了解各种系统软件的优势和缺陷 , 扬

长避短 ,才能达到良好的性能要求。

5　结束语

软件的性能设计是系统设计师的责任 , 性能设计是建设大型

应用系统不可或缺的一步。有了性能设计 , 系统设计师就会对系

统未来的性能胸有成竹 , 可以避免返工 , 减少浪费 , 提高软件质

量。因此 ,系统设计师应重视性能设计 , 做好性能设计!

(收稿日期:2007-09-28)


