

联系博文视点

您可以通过如下方式与本书的出版方取得联系。

读者信箱：reader@broadview.com.cn

投稿信箱：bvtougao@gmail.com

北京博文视点资讯有限公司（武汉分部）

湖北省 武汉市 洪山区 吴家湾 邮科院路特 1 号 湖北信息产业科技大厦 1402 室

邮政编码：430074

电 话：027-87690813

传 真：027-87690595

若您希望参加博文视点的有奖读者调查，或对写作和翻译感兴趣，欢迎您访问：

http://bv.csdn.net

关于本书的勘误、资源下载及博文视点的最新书讯，欢迎您访问博文视点官方博客：

http://blog.csdn.net/bvbook

一线架构师实践指南

前辈推荐
（以姓氏笔划为序）

本书系统介绍了当前软件架构设计领域先进的 ADMEMS 方法体系，并以作者十余年来在软

件开发实践和研究中积累的丰富经验，在论述架构设计不同阶段的分析方法与设计技术的同时，

给出了相应的实践策略、实践套路及有用的设计案例。本书具有极强的实用性，不但是一线架构

师及希望成为软件架构师者的福音，对我国软件业界在软件架构相关方面的研究工作也有一定的

推动作用。值得一提的是，本书文笔生动，深入浅出，议论充满睿智，读来常令人有如沐春风之

感，在技术类书籍中也是不可多得的。

——杨晋兴 中航集团公司 631研究所研究员 前系统软件室主任

作者在本书中提出了 ADMEMS 架构设计方法学，特别是详细论述了逻辑架构设计的 10 条

经验，以及基于鲁棒图进行初步设计的 10 条经验。这些经验既是作者亲身的实践总结，又概括

了业界的有效实践。作者还运用贯穿案例、大型网站案例等形式，将实践经验与原理整合起来，

以帮助读者理解和掌握 ADMEMS 架构设计方法学的精髓。本书不仅生动地反映出作者的创造性

思维和对学术的刻苦耕耘，又反映出作者对架构学的崇高历史责任感。我相信本书的出版，不仅

对架构师们有很好的参考价值，而且对推动架构学界的深入研究具有重要意义。

——周伯生 北航计算机学院教授 博士生导师 美国 SDPS 学会院士

编写一套软件系统并不困难，但要编写一套优质、高效的软件系统却是极大的挑战。一套优

质的软件需合理设计，功能需求、未来应用环境、硬体组合、数据处理要求、计算逻辑、用户分

布、使用习惯等多方面因素都是系统架构师在软件工程的设计阶段要思考及解决的问题。软件工

程的架构师犹如建造工程的建筑师一样，一些建筑师能够最终成为“大师”，主要是他们的建筑

设计除了能够满足应用需求外，还能结合周边环境，拥有独特的组合理念和创意。把握软件的架

构设计技巧和方法，才能够带出软件创新的成果。《一线架构师实践指南》提供从业人员这方面

的信息，透过简易的说明和分析，让读者理解如何才能够客观地为客户设计高效和优质的计算机

软件，是成为真正软件工程师的第一步，是未来软件大师的实践指南。

——黄绍良 南开大学软件学院 教授

一线架构师实践指南

专家推荐
（以姓氏笔划为序）

架构师不仅仅是名片上的一个头衔，他本人必须在熟悉客户须要做什么的基础上，伏下身子

带领各个开发团队攻克难题并优化系统组成间的关联。架构师不应是单纯的界面设计人员——只

能出产幻灯片和插图；他应能用系统而缜密的步骤帮助团队完成更“好”的产出。很喜欢读温先

生对于架构设计的著作，对本书“一线”的概念更加推崇，毕竟没有“一线”就直接去尝试所谓

的“宏观”、“超大”似乎不够稳妥。

——王翔 全国海关信息中心 高级技术架构师

什么是软件架构？目前似乎没有标准的答案，它的本质是给一个软件系统做一个蓝图

式的表述。面对这类表述，我们可以有多种方式进行概念抽象和细节忽视，就像给现实世

界作画（也是一种蓝图方法），可以使用各种方法，如：写实，素描……。我们还可以形

成不同风格，如：抽象派、印象派……。温昱先生在介绍了“方法体系”的基础上，给出

了自己关于软件架构的方法和看法，很值得有志成为“一线架构师”的人士学习和借鉴。

——左春 中科软科技股份有限公司总裁 中科院软件所研究员

架构是什么，每个人都可以说上两句，但是很少有人能说得清楚。如何做架构呢？大

家都知道其无比重要，但是大部分人还是一头雾水、不知所措。怎么讲架构呢？晦涩难懂，

两分钟就能让人进入梦乡的比比皆是，把架构讲得像故事，读起来让人感觉津津有味、流

连忘返的书真是世间少有。

《一线架构师实践指南》正是这样一本书，对于那些有志于成为架构师的人来说，它

既是思想的启蒙者，又是行动的指导者，让你在不知不觉中学习、成长。如果还认为架构

是那么高深莫测、遥不可及，你不妨看看它。

——齐书阳 《软件世界》杂志社 主编

vi 专家推荐

一线架构师实践指南

初识温昱老师是在 2007 年一场由他主讲的“软件架构师”的培训会上，他对软件架构的

独到理解及实际经验形成的贯穿案例给我留下了深刻的印象。

两年来，我和我的团队应用了温老师的一些方法来开发电信行业无线网优平台这个大型平

台软件，目前已经取得初步成功。在这个平台中，概念性架构设计、5 视图法细化架构设计等

方法都在团队中达成统一认识，并较好地应用在实际工作中，特别是非功能需求设计的方法在

用户话单分析和无线测量报告等海量数据处理方面的实践取得了明显的成效。

《一线架构师实践指南》一书秉承作者在架构设计上注重方法、注重实践的一贯思想，围

绕“需求进、架构出”全过程实践指导的方法体系，对软件架构设计的三个阶段一个贯穿环节

进行了详尽的描述，其中无处不在的案例对 ADMEMS 体系做了生动的描述和分析，确实是一

本在架构设计领域具有实践指导意义的、难得的好书。

每天忙碌于软件设计的和程序开发的软件业朋友们，不妨停下脚步来用心拜读一下这本

书，它会从多个视角告诉你在不同阶段应该做什么样的事情，相信大家会受益匪浅。

——杜海亮 天元网络公司 副总工程师

作为一名软件工程和架构设计的实践者，我追求构建“可靠、适用和易扩展”的系统，应用

适当的技术、工具和方法来解决实际项目中的需求和问题。本书提供了丰富而实用的理论和技术

实践策略，既适合初学者学习也适合经验丰富的软件工作者深入体会，具有很高的参考价值。

——李胜利 东方电子资深架构师 高级项目经理

一口气将《一线架构师实践指南》专家评荐版阅读完，感觉意犹未尽。针对软件架构设计

相对“神秘”、“高深莫测”来讲，急需方法论使之有章可循。这本书正是在架构设计的方法论

方面、设计细节量化方面、设计应采取的原则方面都做了针对性总结和概括，具有重大的实践

指导意义和推广价值，为一线架构师不可多得的理论指导书！

——李哲洙 东软集团电信事业部研发二部部长

资深咨询顾问 东北大学客座讲师

《一线架构师实践指南》一书，深入浅出，对中大型系统的架构设计起到了航标灯的作用，

不仅解决了资深架构师的困惑，而且对新手具有重大的指导意义。它把抽象的理论落实到实际

的可操作的范围，令人折服。

——宋英 西门子公司 资深 IT 专家

 专家推荐 vii

一线架构师实践指南

软件架构设计很难，难在只能意会，很难言传。

本书作者不但具有丰富的架构设计方面的理论知识，而且有多年的架构设计和咨询实践经

验。基于这些理论知识和实践经验，作者形成了关于架构设计方面的核心主张，并且提出了非

常具有指导和实践意义的方法体系——ADMEMS。细细体会这些核心主张和 ADMEMS 方法，

发现似曾相识，特别有共鸣。原来我们在平时的架构设计中，竟不知不觉地在使用这些主张和

方法，但是没有总结出来。本书作者的高明，在于系统地总结和抽象，在于言传。

我非常愿意向读者推荐此书，因为本书是从实践中来的，自然可以很好地运用到实践中去，

具有很高的实践指南价值。

——宋兴烈 起步科技 总工程师

在软件行业，“架构”是一个很时髦的词汇，架构师是很多年轻人梦寐以求的“金领”职

位。遗憾的是，对于如何培养出优秀的架构师，特别是如何指导架构师进行设计实践的书籍很

少。8 年前，我就开始从事软件架构领域的研究与实践，阅读了不少文献，但直到读了温昱先

生的这本书后，才悟出“架构实践”的内涵，才真正知道该如何实现“需求进，架构出”的过

程。 该书对于一个架构设计老兵尚且有此帮助，更何况新手呢？

——张友生博士 希赛网首席架构师 希赛教育首席专家

经常同温昱老师深入交流架构设计对产品和系统质量保证的影响，温老师在架构设计的理论

与实践方面有深厚的功底和丰富的经验，他多年磨练的解决实际问题的精湛能力给企业和用户带

来了很大的收益。《一线架构师实践指南》的出版，是架构设计实践领域的突破，相信书中丰富

实用的案例、深入浅出的理论、清晰流畅的表达，以及耐人寻味的故事会让读者回味无穷。

——陈渌萍 中国软件评测中心 技术总监

本书是温昱先生继《软件架构设计》之后的又一力作，实属原创中文软件架构图书中的奇

葩。这两部姊妹篇，将作者多年来在软件架构设计方面的实践经验与独到见解，用中国程序员

能接受的讲解方式，逐一展现给读者。《一线架构师实践指南》所讲述的方法原理和实践经验，

对指导架构设计实践具有非常实用的参考价值。

——罗景文 IBM developerWorks 中国网站

架构是科学，也是艺术，本书化架构的艺术为科学，让架构变成可被传承可被学习的科学。

无论你已经是架构师，还是想成为架构师，你都应该将这本书摆在床头，经常翻阅，并且按照

书上的方法指南实践，直到将架构方法烂熟于胸，这样你也能像温昱那样成为一个优秀的架构

师，设计架构的时候得心应手。

——周恒 IBM 高级架构师

viii 专家推荐

一线架构师实践指南

温昱先生是我过去的同事，他的协助和在项目中对架构炉火纯青的运用使我受益匪浅。我

向来认为“架构师”分量很重，并非在个别项目中运用了一些软件架构的思想或设计模式就能

称为“架构师”。只有从实践中来，再将架构理论运用于实践，才能真正称为理解了“架构”，

而温昱先生就是个中翘楚。非常喜欢读他的书，并乐于向大家推荐。

——须泽中博士 日本贝赛莱多媒体信息技术有限公司 软件部部长

看了温昱的这本《一线架构师实践指南》，我不由得想起自己经常分享的总结：“我们并不

缺乏软件工程的方法，真正缺乏的是在实践中有效地组合应用它们的体系”，需求工程是这样，

架构设计也是这样。而 ADMEMS 正是架构领域的指路明灯，它架构在成熟方法论这一巨人上，

构建在作者多年来跨不同领域、不同平台的架构设计经验的基础上。

正如作者在书中所说的那样，架构是一门艺术；何为艺术呢？艺术是源于生活、高于生活

的东西；换句话说，没有真实的生活体验就没有艺术。本书中那些让人倍感亲切的场景，毫不

陌生的困惑，都使得这本书更加贴近实践，更容易让读者在实践中有效地应用本书所介绍的方

法，也更加符合“艺术”的定义。

相信所有从事软件架构设计、详细设计、开发工作的从业人员都能够从本书中获得清晰的

思路、可行的方法；因此我强烈推荐大家不要错过这本难得的“内功心法”。

——徐锋 独立咨询顾问 需求过程框架 SERU 创始人 CSAI 首席顾问

架构设计对项目至关重要，做好非常不易；相关理论和书籍不少，真正实用的则不多，温

昱先生大作是个中翘楚。作者集 10 多年实践和研究，形成一套实用性强、非学院式的体系，

对做好架构设计富有指导价值。书中的三阶段理论、结构化需求与约束分析等不少概念一经指

出让人有茅塞顿开之感。书中有很实用的操作技巧，值得每一个架构师反复学习和操练，领会

之后定会让您的架构设计更上一层楼。

——董振江 中兴通讯业务研究院 副院长

温昱是《程序员》杂志的作者，也是我们 SD2.0 大会邀请的讲师。几年来，CSDN 和他保

持着良好的合作关系，而我在合作过程中也逐渐了解了他在架构方面的经验和积累。中国从来

不缺理论家，中国软件领域尤其不缺理论家，我们缺少的是来自第一线、将实践经验提升到理

论高度再反馈回实践的人。温昱就是这样一个人，他的《一线架构师实践指南》，也是这样一

本书。我乐意向架构师或有志于成为架构师的读者推荐这本书。

——韩磊 CSDN 总编辑

 专家推荐 ix

一线架构师实践指南

架构师是一种神秘的职业，成为一名合格的架构师是每个开发者的梦想。成为合格的架构

师难在预见系统问题的思考方式，温昱将多年架构经历积累而成的宝贵经验传授给我们，非常

难得。书中既有架构各个阶段的方法论指导，又有软件和网站架构的实战演练，是成为合格架

构师必备的指南。

——曾登高 CSDN 技术总监

本书针对新老架构设计人员在实际工作中经常遇到的困惑，结合对典型案例的分析，以

ADMEMS 方法由浅入深地给出了相应的对策，实战性极强。本人认为此书实乃业界相关书籍

中的一朵奇葩，强烈建议新老架构设计人员人手一本，作为将来工作中的指导参考用书。

——靳向阳 加拿大 IBM 软件工程师

序

方法之于个人，乃至软件业，都是至关重要的。对架构新手，方法是陌生之地的指路明

灯，避免架构设计者不知所措（这很常见）；对架构老手，方法是使经验得以充分发挥的思

维框架，指导架构设计者摆脱“害怕下一个项目”的心理和“思维毫无章法”的状态；对软

件业而言，方法是整个产业“上升一个层次”的“内功”，没有“内功”为基础，单靠“外

力”促进软件产业升级是不现实的。

本书致力于为一线架构师，以及软件企业提供务实有效的架构设计方法指导。

为什么这么多架构师总是抱怨需求呢？因为不少架构师不懂需求，而更多架构师缺乏需

求的大局观。为此，可以看看本书【第 1 部分 Pre-architecture 阶段】的“ADMEMS 矩阵方

法”、以及“约束性需求的四种类型”等内容。

设计稳定的架构，首要的一点是什么呢？是概念架构必须稳定。为此，可以看看本书【第

2 部分 Conceptual Architecture 阶段】是如何展开阐述“重大需求塑造概念架构”的。

如何更合理地将系统切分为子系统呢？答案是遵循职责分离原则、通用专用分离原则、

技能分离原则、工作量均衡原则等设计思想的要求。本书【第 3 部分 Refined Architecture

阶段】讲解了分层的细化、分区的引入、机制的提取等实践技巧。

回顾过去，我在金融、航空、多媒体、电信、中间件平台等领域的职业经历中，幸运地

遇到了很多良师益友，他们的智慧和无私使我受益匪浅；近几年，在软件企业一线开展架构

培训与咨询工作时，认真务实的客户让我进一步开阔了视野，了解了软件业一线的现状……

这些，都是本书所讲述的架构设计方法体系形成和发展的原动力。所以，由衷感谢：所有帮

助和支持过我的前辈、专家、客户！

可通过 shanghaiwenyu@163.com 与我联系，欢迎探讨、批评、指正。

资深咨询顾问 温昱
2009 年 8月于上海

目 录
content

第 1 章 绪 论... 1

1.1 一线架构师：6 个经典困惑 ..1

1.2 本书的 4 个核心主张 ...2

1.2.1 方法体系是大趋势 ...2

1.2.2 质疑驱动的架构设计 ...2

1.2.3 多阶段还是多视图？ ...3

1.2.4 内置最佳实践 ...4

1.3 ADMEMS 方法体系：3 个阶段，1 个贯穿环节 ...4

1.3.1 Pre-architecture 阶段：ADMEMS 矩阵方法...5

1.3.2 Conceptual Architecture 阶段：重大需求塑造做概念架构 ..6

1.3.3 Refined Architecture 阶段：落地的 5 视图方法 ...7

1.3.4 持续关注非功能需求：“目标-场景-决策”表方法 ...7

1.4 如何运用本书解决“6 大困惑” ..8

第Ⅰ部分 Pre-Architecture 阶段 ... 11

第 2 章 Pre-architecture 的故事 .. 13

2.1 “不就是个 MIS 吗” ..13

2.1.1 故事：外籍人员管理系统 ...13

2.1.2 探究：哪些因素构成了架构设计的约束性需求..14

2.2 “必须把虚存管理剪裁掉” ...14

2.2.1 故事：嵌入式 OS 的剪裁 ..14

2.2.2 探究：又是约束 ...14

2.3 “都是 C++的错，换 C 重写” ..15

2.3.1 故事：放弃 C++，用 C 重写计费系统...15

2.3.2 探究：相互矛盾的质量属性 ...15

2.4 展望“Pre－architecture 阶段篇” ..16

xvi 目 录

一线架构师实践指南

第 3 章 Pre-architecture 总论.. 17

3.1 什么是 Pre-architecture ..18

3.2 实际意义...18

3.2.1 需求理解的大局观 ...18

3.2.2 降低架构失败风险 ...18

3.2.3 尽早开始架构设计 ...19

3.2.4 明确架构设计的“驱动力” ...20

3.3 业界现状...21

3.3.1 “唯经验论” ...21

3.3.2 “目标不变论” ...21

3.3.3 需求分类法的现状 ...22

3.3.4 需求决定架构的原理亟待归纳 ...23

3.4 实践要领...24

3.4.1 不同需求影响架构的不同原理，才是架构设计思维的基础24

3.4.2 二维需求观与 ADMEMS 矩阵方法 ..26

3.4.3 关键需求决定架构，其余需求验证架构..27

3.4.4 Pre-architecture 阶段的 4 个步骤 ...27

第 4 章 需求结构化与分析约束影响 ..29

4.1 为什么必须进行需求结构化 ...29

4.2 用 ADMEMS 矩阵方法进行需求结构化..30

4.2.1 范围：超越《软件需求规格说明书》..30

4.2.2 工具：ADMEMS 矩阵...30

4.3 为什么必须分析约束影响 ...32

4.4 ADMEMS 方法的“约束分类理论”...33

4.5 Big Picture：架构师应该这样理解约束 ...34

4.6 用 ADMEMS 矩阵方法辅助约束分析..35

4.7 大型 B2C 网站案例：需求结构化与分析约束影响 ..36

4.7.1 需求结构化 ...36

4.7.2 分析约束影响（推导法则应用） ...36

4.7.3 分析约束影响（查漏法则应用） ...38

4.8 贯穿案例...39

4.8.1 PASS 系统背景介绍 ...39

4.8.2 需求结构化 ...39

目 录 xvii

一线架构师实践指南

4.8.3 分析约束影响 ...40

第 5 章 确定关键质量与关键功能.. 43

5.1 为什么要确定架构的关键质量目标 ...43

5.2 确定关键质量的 5 大原则 ...44

5.2.1 整体思路 ...44

5.2.2 分类合适 + 必要扩充 ...45

5.2.3 考虑多方涉众 ...46

5.2.4 检查性思维 ...46

5.2.5 识别矛盾 + 划定优先级 ...46

5.2.6 严格程度符合领域与规模特点 ...47

5.3 为什么不是“全部功能作为驱动因素” ...48

5.4 确定关键功能的 4 条规则 ...49

5.5 大型 B2C 网站案例：确定关键质量与关键功能 ..51

5.6 贯穿案例...52

第Ⅱ部分 Conceptual Architecture 阶段.. 55

第 6 章 概念架构的故事 .. 55

6.1 一筹莫展...55

6.1.1 小张，以及他负责的产品 ...56

6.1.2 老王，后天见客户 ...57

6.2 制定方针...58

6.2.1 小张：我必须先进行概念架构的设计..58

6.2.2 老王：清晰的概念架构，明确的价值体现..59

6.3 柳暗花明...60

6.3.1 小张：重大需求塑造概念架构 ...60

6.3.2 老王：概念架构体现重大需求 ...62

6.4 结局与经验...62

6.4.1 小张：概念架构是设计大系统的关键..62

6.4.2 老王：概念架构是售前必修课 ...63

第 7 章 Conceptual Architecture 总论 ... 65

7.1 什么是概念架构 ...65

7.2 实际意义...66

xviii 目 录

一线架构师实践指南

7.3 业界现状...67
7.3.1 误将“概念架构”等同于“理想架构”..67

7.3.2 误把“阶段”当成“视图” ...68

7.4 实践要领...68

7.4.1 重大需求塑造概念架构 ...68

7.4.2 概念架构阶段的 3 个步骤 ...69

第 8 章 初步设计 ... 71

8.1 初步设计对复杂系统的意义 ...71

8.2 鲁棒图简介...72

8.2.1 鲁棒图的 3 种元素 ...72

8.2.2 鲁棒图一例 ...73

8.2.3 历史 ...74

8.2.4 为什么叫“鲁棒”图 ...74

8.2.5 定位 ...75

8.3 基于鲁棒图进行初步设计的 10 条经验 ...77

8.3.1 遵守建模规则 ...77

8.3.2 简化建模语法 ...78

8.3.3 遵循 3 种元素的发现思路 ...78

8.3.4 增量建模 ...78

8.3.5 实体对象≠持久化对象 ...80

8.3.6 只对关键功能（用例）画鲁棒图 ...81

8.3.7 每个鲁棒图有 2～5 个控制对象 ...81

8.3.8 勿关注细节 ...81

8.3.9 勿过分关注 UI，除非辅助或验证 UI 设计 ..81

8.3.10 鲁棒图≠用例规约的可视化 ...82

8.4 贯穿案例...82

第 9 章 高层分割 ... 85

9.1 高层分割的两种实践套路 ...85

9.1.1 切系统为系统 ...86

9.1.2 案例：SAAS 模式的软件租用平台架构设计 ..87

9.1.3 切系统为子系统 ...89

9.2 分层式概念架构实践 ...91

目 录 xix

一线架构师实践指南

9.2.1 Layer：逻辑层...91

9.2.2 Tier：物理层..92

9.2.3 按通用性分层 ...94

9.2.4 技术堆叠 ...94

9.3 给一线架构师的提醒 ...95

9.4 贯穿案例...96

9.4.1 从初步设计到高层分割的过渡 ...96

9.4.2 PASS 系统之 Layer 设计..96

9.4.3 PASS 系统之 Tier 设计...97

9.4.4 引入通用性分层 ...97

第 10 章 考虑非功能需求 .. 99

10.1 考虑非功能目标要趁早 ...99

10.2 贯穿案例...100

第Ⅲ部分 Refined Architecture 阶段 ... 103

第 11 章 细化架构的故事 .. 105

11.1 骄傲的架构师，郁闷的程序员 ... 105

11.1.1 故事：《方案书》确认之后 ... 105

11.1.2 探究：“方案”与“架构”的关系.. 106

11.2 办公室里的争论 ... 107

11.2.1 故事：办公室里，争论正酣.. 107

11.2.2 探究：优秀的多视图方法，应贴近实践.. 108

11.3 展望“Refined Architecture 阶段篇” ...109

第 12 章 Refined Architecture 总论..111

12.1 什么是 Refined Architecture... 111

12.2 实际意义...113

12.3 业界现状...113

12.3.1 误认为多视图是 OO 方法分支.. 113

12.3.2 误将“视图”当成“阶段” ... 113

12.3.3 RUP 4+1 视图 ... 114

12.3.4 SEI 3 视图 ... 115

12.4 实践要领...116

xx 目 录

一线架构师实践指南

12.4.1 缘起：5 视图方法的提出 .. 116

12.4.2 总图：每个视图，一个思维角度 ... 116

12.4.3 详图：每个视图，一组技术关注点 ... 117

第 13 章 逻辑架构 ... 119

13.1 划分子系统的 3 种必用策略 ...119

13.1.1 分层（Layer）的细化 .. 120

13.1.2 分区（Partition）的引入.. 120

13.1.3 机制的提取 ... 121

13.1.4 总结：回顾《软件架构设计》提出的“三维思维”.. 123

13.1.5 探究：划分子系统的 4 个重要原则 ... 125

13.2 接口设计的事实与谬误 ...126

13.3 逻辑架构设计的整体思维套路 ...127

13.3.1 整体思路：质疑驱动的逻辑架构设计.. 127

13.3.2 过程串联：给初学者 ... 128

13.3.3 案例示范：自己设计 MyZip ... 129

13.4 更多经验总结 ...132

13.4.1 逻辑架构设计的 10 条经验要点 ... 132

13.4.2 简述：逻辑架构设计中设计模式应用.. 133

13.4.3 简述：逻辑架构设计的建模支持 ... 134

13.5 贯穿案例...135

第 14 章 物理架构、运行架构、开发架构... 139

14.1 为什么需要物理架构设计 ...139

14.2 物理架构设计的工作内容 ...140

14.3 探究：物理架构的设计思维 ...140

14.4 为什么需要运行架构设计 ...141

14.5 运行架构设计的工作内容 ...142

14.5.1 工作内容 ... 142

14.5.2 控制流图是关键 ... 143

14.6 实现控制流的 3 种常见手段 ...143

14.7 为什么开发架构是必须的 ...144

14.8 开发架构设计的工作内容 ...145

14.9 观点：重用测试是关键 ...147

目 录 xxi

一线架构师实践指南

14.9.1 探究：我们为何年复一年修改着类似的 Bug .. 147

14.9.2 观点：为了从根本上降低维护成本，重用测试是关键 .. 147

14.9.3 简评：设计模式对重用的意义 ... 148

14.10 贯串案例...149

14.10.1 物理架构 ... 149

14.10.2 持续不断地考虑非功能需求 ... 150

14.10.3 开发架构 ... 151

14.10.4 架构设计应进行到什么程度 ...152

第 15 章 数据架构的难点：数据分布 .. 153

15.1 数据分布的 6 种策略 ...153

15.1.1 独立 Schema（Separate-schema）... 154

15.1.2 集中（Centralized） ... 154

15.1.3 分区（Partitioned）.. 155

15.1.4 复制（Replicated） .. 156

15.1.5 子集（Subset） .. 156

15.1.6 重组（Reorganized） ... 156

15.2 数据分布策略大局观 ...157

15.2.1 6 种策略的二维比较图 .. 157

15.2.2 质量属性方面的效果对比 ... 158

15.3 数据分布策略的 3 条应用原则 ...159

15.3.1 合适原则：电子病历 vs. 身份验证案例 ... 159

15.3.2 综合原则：服务受理系统 vs. 外线施工管理系统案例 160

15.3.3 优化原则：铃声下载门户案例 ...162

第Ⅳ部分 专题：非功能目标的方法论.. 173

第 16 章 故事：困扰已久的非功能问题 .. 167

16.1 “拜托，架构师不是需求分析师” ...168

16.1.1 故事：小魏请教老沈 ... 168

16.1.2 探究：架构师必须懂需求 ... 169

16.2 “敢说 ISO 9126 不对，真牛” ..170

16.2.1 故事：小冯与小汪的争论 ... 170

16.2.2 探究：死抱需求标准，还是务实应变.. 170

xxii 目 录

一线架构师实践指南

16.3 “我说得很清楚，架构要灵活” ...171

16.3.1 故事：狮子说清了，绵羊没搞定 ... 171

16.3.2 探究：交流质量要求，如何做到“说得清楚、听得明白” 172

16.4 展望本部分的后续内容 ...172

第 17 章 总论：非功能目标的设计环节 .. 173

17.1 非功能目标的设计环节简介 ...173

17.2 实际意义...174

17.3 业界现状...175

17.4 实践要领...176

17.4.1 场景思维 ...176

17.4.2 纵穿环节 ...176

第 18 章 方法：“目标-场景-决策”表 ... 177

18.1 场景技术...177

18.1.1 场景技术的历史 ...177

18.1.2 软件行业中场景技术的应用现状与展望..178

18.1.3 场景的 5 要素与场景卡 ...179

18.2 “目标-场景-决策”表 ..180

索引 ... 182

一线架构师实践指南

第 1章
绪 论

软件架构在不断发展，但它仍然是一个尚不成熟的学科。

——Len Bass，《软件构架实践（第 2 版）》

推动软件工程研究不断发展的，常是实际生产或使用软件时遇到的

难题（Software engineering research is often motivated by problems
that arise in the production and use of real-world software.）。

——Mary Shaw，《The Golden Age of Software Architecture》

架构设计能力，因掌握起来困难而显得珍贵。

本章概括一线架构师经常面对的实践困惑，并点出 ADMEMS 方法的应对之策。

1.1 一线架构师：6个经典困惑

一线架构师经常面对的实践困惑，可以用图 1-1 来概括。其中，涉及了“4 个实际问题的困

惑”，以及“两个职业发展的困惑”。

图 1-1 一线架构师的 6 个经典困惑

2 第 1章 绪论

一线架构师实践指南

1.2 本书的 4个核心主张

画龙须点睛。

在介绍具体方法之前，先来阐释本书的 4 个核心主张：

 方法体系是大趋势。

 质疑驱动的架构设计。

 多阶段方法。

 内置最佳实践的方法。

这 4 个核心主张可帮助读者领会 ADMEMS 方法之精髓。

1.2.1 方法体系是大趋势

单一方法已捉襟见肘。一线架构师真正需要的，是覆盖“需求进，架构出”全过程的实践指

导——只有综合了不同方法优点的“方法体系”才堪此重任。本书认为，方法体系必然是软件业

界未来发展的重大趋势之一。

本书将要系统介绍的方法体系的名字——ADMEMS，正是“Architectural Design Method has

been Extended to Method System”的缩写。是的，ADMEMS 方法不是“单一方法”，而是由多个

各具特点的方法组成的“方法体系”。ADMEMS 方法通过它的名字亮明了其核心主张。

ADMEMS 方法命名由来

ADMEMS 是“Architectural Design Method has been Extended to Method

System（架构设计方法已经扩展到方法体系）”的缩写。

1.2.2 质疑驱动的架构设计

从根本上讲，架构设计毫无疑问是需求驱动的，而不是模型驱动的。

但需求驱动的说法不太传神——当你很清楚需求却依然设计不出架构时，就足以说明“需求

驱动的架构设计”的总结还“缺点儿什么”。

架构设计是一门艺术，你不可能把“一桶需求”倒进某台神奇的机器，然后等着架构设计自

动被“加工生产”完毕，因此“需求驱动的架构设计”的总结给架构师的启发不够。

缺点儿什么呢？答案是缺“人的因素”、“架构师的因素”！

本书将不断阐释架构设计实际上是个“质疑驱动的过程”：需求，被架构师的大脑（而不是

1.2 本书的 4个核心主张 3

一线架构师实践指南

自动）有节奏地引入架构设计一波接一波的思维活动中。例如，作为架构师，当你的架构设计进

行到一半时，你可以明显感觉到：这个架构设计的中间成果，还须要进一步通过“质疑”引入更

多“质量属性”，以及“特殊功能场景”来驱动后续架构设计工作的开展。

在保留“需求驱动的架构设计”所有正确内涵的同时，“质疑驱动的架构设计”告诉架构师：

你的头脑，才是架构设计全过程的发动机。质疑意识，是架构师最宝贵的意识之一。

至于有的专家提倡的“用例驱动的架构设计”观点，则有严重缺陷，3 句话足以揭示这一点：

 需求 = 功能 + 质量 + 约束。

 用例是功能需求的实际标准。

 用例涉及、但不涵盖非功能需求。

1.2.3 多阶段还是多视图？

架构设计的多视图方法很重要，但是，架构设计方法首先应当是多阶段的，其次才是多视图

的。如图 1-2 所示。

图 1-2 架构设计方法首先应当是多阶段的，其次才是多视图的

一句话，先做后做——这叫阶段（Phase），齐头并进——这叫视图（View）。

本书认为，任何好的方法（不局限于软件领域），都必须以时间为轴来组织，因为这样才最

利于指导实践。

架构设计只需多视图方法，看上去很美，其实并不足够。实际上，大量一线架构师早已感觉

到多视图方法的“不足够”。例如，想想投标：

 一方面，投标时，要提供和讲解《方案建议书》，其中涉及架构的内容。

 另一方面，团队并行开发时，需要《架构设计文档》供多方涉众使用。

 但是，投标时讲的“架构”和并行开发时作为基础的“架构”在同一个抽象层次上吗？

4 第 1章 绪论

一线架构师实践指南

绝不可能。前者叫概念架构，后者叫细化架构。如果投标失败，细化架构设计根本就

不须要做了。

 结论，概念架构设计和细化架构设计，是两个架构阶段，不是两个架构视图。

1.2.4 内置最佳实践

方法不应该是个空框框，应融入最佳实践经验。相信业界很多专家都正朝着这个方向迈进。

ADMEMS 方法中融入了笔者的哪些实践经验呢？仅举几例：

 逻辑架构设计的 10 条经验（如图 1-3 所示）。

 质疑驱动的逻辑架构设计整体思路（如图 1-4 所示）。

 基于鲁棒图进行初步设计的 10 条经验。

 ADMEMS 矩阵方法。

 约束的 4 大类型。

 ……

图 1-3 逻辑架构设计的 10 条经验 图 1-4 质疑驱动的逻辑架构设计整体思路

1.3 ADMEMS方法体系：3个阶段，1个贯穿环节

作为方法体系，ADMEMS 方法通过 3 个阶段和 1 个贯穿环节，来覆盖“需求进，架构出”

的架构设计完整工作内容。

图 1-5 说明了“3 个阶段”在整个方法体系中的位置。具体而言：

1.3 ADMEMS方法体系：3个阶段，1个贯穿环节 5

一线架构师实践指南

 预备架构（Pre-architecture）阶段（简称 PA 阶段）。

 最大误区：架构师是技术人员不必懂需求。

 实践要点：摒弃“需求列表”方式，建立二维需求观。

 思维工具：ADMEMS 矩阵等。

 概念架构（Conceptual Architecture）阶段（简称 CA 阶段）。

 最大误区：概念架构 = 理想设计。

 实践要点：重大需求塑造概念架构。

 思维工具：鲁棒图、目标-场景-决策表等。

 细化架构（Refined Architecture）阶段（简称 RA 阶段）。

 最大误区：架构 = 模块 + 接口。

 实践要点：贴近实践的 5 视图法。

 思维工具：包图、包-接口图、灰盒包图、序列图、目标-场景-决策表等。

图 1-5 ADMEMS 方法体系包含 3 个阶段

值得强调的是，上述 3 个阶段之间的先后顺序有极大的实际意义，否则就不能称其为“阶

段”了：

 试想，在 Pre-architecture 阶段对需求理解不全面（例如遗漏了需求）、不深入（例如没

有发现“高性能”和“可扩展”是两个存在矛盾的质量属性），后续设计怎会合理？

 试想，Conceptual Architecture 阶段的概念架构设计成果没有反映系统的特点就“冲”

去做 Refined Architecture 设计，是不是必然造成更多的设计返工？

“1 个贯穿环节”，指的是对非功能目标的考虑。

1.3.1 Pre-architecture阶段：ADMEMS矩阵方法

Pre-architecture 阶段的使命，可以概括为一句话：全面理解需求，从而把握需求特点，进

而确定架构设计驱动力。其中，ADMEMS 矩阵居于方法的核心。

6 第 1章 绪论

一线架构师实践指南

“ADMEMS 矩阵”又称为“需求层次-需求方面矩阵”（如表 1-1 所示），帮助架构师告别

需求列表的陈旧方式，顺利过渡到二维需求观，借此避免遗漏需求、并进一步理清需求间关系和

发现衍生需求。

表 1-1 ADMEMS 矩阵的基础是二维需求观
 功能 质量 约束

技术性约束 遗留系统集成

法规性约束 标准性约束

技术趋势 分批实施
组织需求 业务目标 快、好、省

竞争因素与竞争对手

用户需求 用户需求 运行期质量

用户群特点

用户水平

多国语言

开发需求 行为需求 开发期质量

开发团队技术水平 开发团队磨合程度

开发团队分布情况 开发团队业务知识

管理：保密要求 管理：产品规划

安装 维护

1.3.2 Conceptual Architecture阶段：重大需求塑造做概念架构

概念架构 ≠ 理想化架构。所以，必须考虑包括功能、质量、约束在内的所有方面的需求。

图 1-6 说明了 ADMEMS 方法推荐的概念架构设计的高层步骤。

图 1-6 ADMEMS 方法推荐的概念架构设计做法

1.3 ADMEMS方法体系：3个阶段，1个贯穿环节 7

一线架构师实践指南

1.3.3 Refined Architecture阶段：落地的 5视图方法

细化架构是相对于概念架构而言的。细化架构阶段的总体方法为 5 视图方法，如图 1-7 所示。

图 1-7 5 视图法：ADMEMS 方法的一部分

许多架构师，言架构则必谈 OO。在他们的思想里，认为 OO 方法已完整涵盖了架构设计的

所有方法和技巧。这种看法是相当片面的。

分析图 1-7。若 OO 方法已涵盖架构设计的全部，那么 5 视图方法所涉及的逻辑架构、物理

架构、开发架构、运行架构、数据架构，都应全面受到 OO 方法的指导，然而实际上并不是这样。

正如图中所标明的，物理架构、开发架构、运行架构和数据架构这 4 个架构视图，分别是面向节

点、面向文件、面向控制流和面向 Table（或文件）的——也就是说，一般认为这 4 个架构视图

主要的思维并非 OO 思维。另一方面，即使是逻辑架构的设计，也未必都是以 OO 方法为指导的。

例如，大量嵌入式软件和系统软件还是以 C 语言为主要开发语言，其逻辑架构设计会以结构化方

法为指导。如此看来，倒是将逻辑架构设计总结为“面向职责”更贴近本质。

1.3.4 持续关注非功能需求：“目标-场景-决策”表方法

非功能需求不可能是“速决战”，连编码都会影响到性能等非功能属性，更何况概念架构设

计和细化架构设计。

作为 ADMEMS 方法应对非功能需求的思维工具，目标-场景-决策表将架构师的思维可视化

了。例如，如表 1-2 所示的目标-场景-决策表，揭示了大型网站高性能设计策略背后的理性思维。

8 第 1章 绪论

一线架构师实践指南

表 1-2 目标-场景-决策表：揭示大型网站高性能设计策略背后的理性思维

目标 场 景 决 策
 客户端，重复请求页面，Web 服务器请求数多负载压力大 代理服务器

 客户端，重复请求页面，页面生成逻辑重复执行 Html 静态化

 客户请求，来自不同 ISP，页面跨网络传递慢 内容分发网络

 客户端，大量请求图片资源，Web 服务器压力大
 客户端，大量请求图片资源，Web 服务器无法专门优化 图片服务器

 程序，大量申请数据，硬盘 IO 压力大
 程序，申请不同数据，DBMS 缓存低效 数据库拆分

性能

 （环境：部署多个 DBMS 实例）
程序，更新数据，数据复制开销大 数据库读写分离

1.4 如何运用本书解决“6大困惑”

至此，我们已走马观花地了解了本书要讲的 ADMEMS 方法的特点。那么，如何运用本书解

决章首提到的“6 大困惑”呢？

如图 1-8 所示，针对 6 个困惑分别给出了阅读路线图。

图 1-8 针对 6 个困惑，不同的阅读路线图

例如，如果你是一个已有一定实践经验的架构师，希望更加合理地对系统进行模块切分，请

关注“第 3 部分 Refined Architecture 阶段”。你将了解到，划分子系统的 4 大原则（如图 1-9 所

示）：

 职责分离原则。

 通用专用分离原则。

1.4 如何运用本书解决“6大困惑” 9

一线架构师实践指南

 技能分离原则。

 工作量均衡原则。

图 1-9 第 3 部分 Refined Architecture 阶段：划分子系统的 4 大原则

其他问题的解决思路在此不再展开叙述，请大家参照“路线图”阅读相应章节。

一线架构师实践指南

 第 4章
需求结构化与分析约束影响

心念不同，判断力自然不同。

——严定暹，《格局决定结局》

全面认识需求，是生产出高质量软件所必须的“第一项修炼”。

——温昱，《软件架构设计》

ADMEMS 方法的 Pre-architecture 阶段包括 4 个步骤，本章讲解前两步：

 第 1 步，需求结构化。

 第 2 步，分析约束影响。

4.1 为什么必须进行需求结构化

需求是有结构的。

许多实践者不懂得这一点，更不知如何“主动运用”这一点。在他们眼中，架构设计要应对

的需求往往是又多又乱的，而且遗漏了关键需求也发现不了……

相反，有经验的架构师懂得运用需求的结构。他们能够将复杂的需求集合梳理得井井有条，

为进一步分析不同需求之间的联系（作为权衡折衷的依据）、识别遗漏的重要需求打下坚实基础。

Pre-architecture 阶段要求进行需求结构化，这代表着 ADMEMS 方法更贴近一线架构设计的

真实实践。通过 ADMEMS 矩阵这种思维工具，可以全面理解需求的各个层次、各个方面，更为

分析需求之间关系、识别遗漏需求、发现延伸需求奠定基础。通过形象的“物体归类”隐喻（如

图 4-1 所示）可以加深对需求结构化工作的理解。

30 第 4章 需求结构化与分析约束影响

一线架构师实践指南

图 4-1 需求结构化的隐喻

4.2 用 ADMEMS矩阵方法进行需求结构化

那么，需求结构化要怎么做呢？

第一，绝对不能认为《软件需求规格说明书》就是需求的全部。

第二，运用 ADMEMS 矩阵方法。

4.2.1 范围：超越《软件需求规格说明书》

首先，需求文档常常不够全面，所有有经验的架构师都重视需求文档，但不应该“唯需求文

档是瞻”。

其次，需求变更经常发生，“依赖且仅依赖需求文档”不够聪明，使架构设计工作非常被动。

既然架构师必须“对需求进行理性的、有针对性地权衡、取舍、补充”，那么“作为架构设

计驱动力的需求因素”和“供甲方确认的《软件需求规格说明书》”之间就必然不能“划等号”。

所以，架构师要通过需求结构化真正全面地“鸟瞰”需求大局，就必须超越《软件需求规格

说明书》。

还有一个重大意义在于，只有摆脱对《软件需求规格说明书》提交时间、文档质量、内容变

更的“呆板依赖”，才有可能尽早开始架构设计（请参考第 3 章中“尽早开始架构设计”一节）。

4.2.2 工具：ADMEMS矩阵

矩阵，是很多著名方法的核心。例如，制定公司层战略的方法之一是“波士顿矩阵”，“波士

顿矩阵”又称“市场增长率—相对市场份额矩阵”。

本书推荐的核心工具之一就是“ADMEMS 矩阵”，它又称为“需求层次—需求方面矩阵”。

如表 4-1 所示。

4.2 用 ADMEMS矩阵方法进行需求结构化 31

一线架构师实践指南

表 4-1 ADMEMS 矩阵（需求层次—需求方面矩阵）
 广义功能 质量 约束

技术性约束 遗留系统集成

法规性约束 标准性约束

技术趋势 分批实施
组织需求 业务目标 快、好、省

竞争因素与竞争对手

用户需求 用户需求 运行期质量

用户群特点

用户水平

多国语言

开发需求 行为需求 开发期质量

开发团队技术水平 开发团队磨合程度

开发团队分布情况 开发团队业务知识

管理：保密要求 管理：产品规划

安装 维护

首先，需求是分层次的。一个成功的软件系统，对客户高层而言能够帮助他们达到业务目标，

这些目标就是客户高层眼中的需求；对实际使用系统的最终用户而言，系统提供的功能能够辅助

他们完成日常工作，这些功能就是最终用户眼中的需求；对开发者而言，有着更多用户没有觉察

到的“需求”要实现……

也就是说，从“不同层次的涉众提出需求所站的立场不同”的角度，把需求划分为 3 种类型，

这就是需求的 3 个层次：

业务需求：组织要达到的目标。

用户需求：用户使用系统来做什么。

行为需求：开发人员须要实现什么。

其次，需求还必须从不同方面进行考虑。例如，一个网上书店系统的功能需求可能包括“浏

览书目”、“下订单”、“跟踪订单状态”、“为书籍打分”等，质量属性需求包括“互操作性”和“安

全性”等，而“必须运行于 Linux 平台之上”属于约束性需求之列。实践一再表明，忽视质量属

性和约束性需求，常常导致架构设计最终失败。

于是，从“需求定义了直接目标还是间接限制”的角度，把需求划分为 3 种类型，这就是需

求的 3 个方面：

功能需求：更多体现各级直接目标要求。

质量属性：运行期质量 + 开发期质量。

约束需求：业务环境因素 + 使用环境因素 + 构建环境因素 + 技术环境因素。

一句话，需求是有结构的。而且，需求的结构绝对不是“List”，而应该是“二维数组”。

用 ADMEMS 矩阵方法进行需求结构化，非常直观。作为一种思维工具，ADMEMS 矩阵背

后的原理是“二维需求观”，这是“需求列表”这种“一维需求观”所不及的。这就好比程序设

计选择了不合适的数据结构，那么功能的实现就要多费周折——既然 List、Tree、Graph 等数据

32 第 4章 需求结构化与分析约束影响

一线架构师实践指南

结构大家都了解，用此作为类比再合适不过了。

结构化是控制复杂性的好办法。例如一个会计师，如果他的办公桌上凌乱地堆满了曲别针、

铅笔、硬币……他会因为“东西多”而怎么也找不到某样东西。相反，将不同物品梳脉理络、分

门别类地进行“摆放”，就不会丢东忘西（如图 4-2 所示）。

图 4-2 结构化：分门别类地进行“摆放”

很奇妙，进行需求结构化之后，架构师会感觉“需求变少了”——其实，需求没有变少，但

复杂性却得到了控制。“需求变少了”的最大好处是，架构师可以比原来轻易得多地发现遗漏需

求。

上述方法的运用，请参考本章第 7 节“大型 B2C 网站案例：需求结构化与分析约束影响”。

4.3 为什么必须分析约束影响

风险有个恼人的特点：一旦你忘了它，它就会找上门来制造麻烦。

对于架构设计而言，来自方方面面的约束性需求中潜藏了大量风险因素。所以，有经验的架

构师都懂得主动分析约束影响，识别架构影响因素，以便在架构设计中引入相应决策予以应对。

同样，Pre-architecture 阶段明确要求必须分析约束影响。背鳍下面是不是一条鲨鱼？约束性

需求中，是不是潜藏了风险因素？如图 4-3 所示的隐喻，点明了分析约束影响的要义：尽早识别

风险。

图 4-3 分析约束影响的隐喻

4.4 ADMEMS方法的“约束分类理论” 33

一线架构师实践指南

4.4 ADMEMS方法的“约束分类理论”

那么，分析约束影响应当怎么做呢？

首先，我们要进行约束分类方式的革新，使它符合实践的需要。

总体而言，业界对约束性需求的重视和研究不够，而 ADMEMS 方法不仅注意到了约束对架

构设计的重大影响，还强调约束分类理论应该直接体现“这些约束来自于哪些涉众”。如表 4-2

所示，4 类约束在 ADMEMS 矩阵中的位置清楚地表明：业务环境、使用环境、构建环境应分别

考虑客户组织、用户、开发方这 3 类涉众，而技术环境则和 3 类涉众都有关。

表 4-2 4 类约束在 ADMEMS 矩阵中的位置
 广义功能 质量 约束

技术性约束 遗留系统集成

法规性约束 标准型约束

技术趋势 分批实施
组织需求

业务目标
快好省

竞争因素与竞争对手

用户需求 用户需求 运行期质量

用户群特点

用户水平

多国语言

开发团队技术水平 开 开发团队磨合程度

开发团队分布情况 发团队业务知识

管理：保密要求 管理：产品规划
开发需求 行为需求 开发期质量

安装 维护

只有把握住涉众来源，才便于发现并归纳涵盖广泛的约束因素，也利于有针对性地进行交流，

还可跟踪最终对约束的支持是否令涉众满意。

第一，来自客户组织的约束性需求。

架构师必须充分考虑客户对上线时间的要求、预算限制，以及集成需要等非功能需求。

客户所处的业务领域是什么？有什么业务规则和业务限制？

是否须要关注相应的法律法规、专利限制？

……

第二，来自用户的约束性需求。

软件将提供给何阶层用户？

用户的年龄段？使用偏好？

用户是否遍及多个国家？

使用期间的环境有电磁干扰、车船移动等因素吗？

……

使用环境

构建环境

技

术

环

境

业务环境

34 第 4章 需求结构化与分析约束影响

一线架构师实践指南

第三，来自开发者和升级维护人员的约束性需求。

如果开发团队的技术水平有限（有些软件企业甚至希望通过招聘便宜的程序员来降低成本）、

磨合程度不高、分布在不同城市，会有何影响？

开发管理方面、源代码保密方面，是否须要顾及？

……

第四，也不能遗忘，业界当前技术环境本身也是约束性需求。

技术平台、中间件、编程语言等的流行度、认同度、优缺点等。

技术发展的趋势如何？

……

架构师应当直接或（通过需求分析员）间接地了解和掌握上述需求和约束，并深刻理解它们

对架构的影响，只有这样才能设计出合适的软件架构。例如，如果客户是一家小型超市，软件和

硬件采购的预算都很有限，那么你就不宜采用依赖太多昂贵中间件的软件架构设计方案。

4.5 Big Picture：架构师应该这样理解约束

另外，还有一个重要的基础问题：太多架构师对约束的理解都过于零散，影响了系统化思维。

为此，本节介绍架构师理解约束的“Big Picture”，如图 4-4 所示。

图 4-4 约束是架构设计要解决的问题的上下文，绝对不能忽视

一句话：约束是架构设计的上下文。

没有全局观念就不可能成为架构师，“约束是架构设计要解决的问题的上下文”是一个犀利

的理解，揭示了“软件需求 = 功能需求 + 质量属性 + 约束”背后更深层次的规律。

如你所知，忽视了上下文对架构设计方案的限制，最终的架构设计就是不合理的，甚至是不

4.6 用 ADMEMS矩阵方法辅助约束分析 35

一线架构师实践指南

可行的。举个生活当中的例子吧——设计大桥。如图 4-5 所示，建筑师必须关注以下 4 类约束的

影响，合理规划大桥的设计方案：

 考虑商业环境因素。以促进两岸城市间的经济交往为主（这会影响大桥的选址），同时

决策层也希望大桥的建设在一定程度上起到提升城市形象的作用。

 考虑使用环境因素。水上交通繁忙，而且常有大吨位船只通过，大桥建成投入使用期

间不能对此造成影响。

 考虑构建环境因素。这是一条很大的河流，水深江阔，为造桥而断流几个月是绝对不

可行的。

 考虑技术环境因素。斜拉桥因其跨度大等优点，当前广为流行，并且技术也相当成熟

了……

图 4-5 设计大桥：也须考虑“4 类约束”的影响

4.6 用 ADMEMS矩阵方法辅助约束分析

“PA-2 分析约束影响”在“PA-1 需求结构化”的基础上，充分考虑需求方及业务环境因素、

用户群及使用环境因素、开发方及构建环境因素、业界当前技术环境因素等“4 类约束”，并分析

约束影响、识别约束背后的衍生需求。

从本质上讲，分析约束影响就是分析各个需求项之间的关系，并发现被遗漏的需求。所以，

将需求“化杂乱为清晰”的正交表可以作为分析约束影响的基础——即在需求项清晰定位的前提

下，找到不同需求之间的关系、发现遗漏需求。

ADMEMS 矩阵方法应用法则有两个。

推导法则：从上到下，从右到左。

查漏法则：重点是质量属性遗漏。

第 4.7 节将通过案例予以说明。

36 第 4章 需求结构化与分析约束影响

一线架构师实践指南

4.7 大型 B2C网站案例：需求结构化与分析约束影响

像 Amazon 这样大型的 B2C 网站，架构的起步阶段应如何规划呢？下面看 ADMEMS 方法的

“表现”。

4.7.1 需求结构化

通过 ADMEMS 矩阵（需求层次—需求方面矩阵），有助于高屋建瓴地把握复杂系统的需求

大局。如表 4-3 所示，先来梳理组织一级的需求。

表 4-3 梳理组织一级的需求

 功能 质量 约束

组织

业务目标及业务愿景

 网站定位：B2C 零售
 当前经营：图书
 未来经营：图书、软件、

音乐制品、电子产品、玩

具、婴儿用品、化妆品、

宠物、艺术品、杂货

商业质量

 新功能上线快，随

需应变

商业约束

 投资 2000 万用于初期开发、

运营、市场，之前须取得一

定成功并融资成功
集成约束

 物流、银行、海关、实体店、

各类提供商（包括工厂等生

产企业，以及代理商等经销

企业）

用户

开发

用户级需求，要特别注意挖掘来自“用户及使用环境”的约束。如表 4-4 所示，也勿忘开发

方因素。

表 4-4 重点的用户级需求

 功能 质量 约束
组织

用户

用户

 终端用户
 各种员工角色

运行期质量

 易用性：最便捷的选

择方式

用户级约束

 便捷的购物流程
 客户群大：多国语言
 客户群大：关注范围差异，

须个性化
 消费心理：营造集市效应，

“别人也买了”、“别人还买

了”

开发
 开发方约束

 新组建的团队

4.7.2 分析约束影响（推导法则应用）

接下来分析约束影响。

4.7 大型 B2C网站案例：需求结构化与分析约束影响 37

一线架构师实践指南

基于 ADMEMS 矩阵应用推导法则时规律十分明显：隐含需求（或遗漏需求）是通过从“上

到下”或“从右到左”的脉络被发现的。如表 4-5 所示，考虑到公司的中远期发展（B2C 业务从

图书扩展到各类商品），以及近期商业策略（投入资金 2000 万）的限制，必须制定“网站发展路

线图”——而这对于架构而言属于“开发级约束”。
表 4-5 推导法则应用

 功能 质量 约束

组织

业务目标及业务愿景

 网站定位：B2C 零售
 当前经营：图书
 未来经营：图书、软件、

音乐制品、电子产品、玩

具、婴儿用品、化妆品、

宠物、艺术品、杂货。

商业质量

 新功能上线快，

随需应变

商业约束

 投资 2000 万用于初期开发、运

营、市场，之前须取得一定成功

并融资成功。

集成约束

 物流、银行、海关、实体店、各

类提供商（包括工厂等生产企

业，以及代理商等经销企业）

用户

开发
 开发方约束

 网站发展路线图

表 4-6 和表 4-7 也是类似思维的体现。如此分析对架构师有一个额外的好处：理解了不同需

求之间的联系，不再觉得需求是“一盘散沙”。

表 4-6 推导法则应用（续）

 功能 质量 约束

组织

业务目标及业务愿景

 网站定位：B2C 零售
 当前经营：图书
 未来经营：图书、软件、

音乐制品、电子产品、玩
具、婴儿用品、化妆品、
宠物、艺术品、杂货

商业质量

 新功能上线快，
随需应变

商业约束

 投资 2000 万用于初期开发、运

营、市场，之前须取得一定成功

并融资成功

集成约束

 物流、银行、海关、实体店、各

类提供商（包括工厂等生产企

业，以及代理商等经销企业）

用户

用户
 终端用户
 各种员工角色

管理员功能

 灵活的打折设置
 频率极高的新货上架

开发

开发期质量

 可扩展性

38 第 4章 需求结构化与分析约束影响

一线架构师实践指南

表 4-7 推导法则应用（续）

 功能 质量 约束
组织

用户

用户

 终端用户
 各种员工角色

终端用户功能

 最快的全库搜索
 评价功能（Web2.0）
 多角度关联信息

管理员功能

 灵活的打折设置
 频率极高的新货上架

 用户级约束

 便捷的购物流程
 客户群大：多国语言
 客户群大：关注范围差异，

须个性化
 消费心理：营造集市效应，

“别人也买了”、“别人还买

了”

开发

4.7.3 分析约束影响（查漏法则应用）

另外，还要主动运用查漏法则。例如，我们发现至今对质量的重视还不够（实践一线经常出

现此情况），于是开始“查漏”：方方面面的约束背后藏着哪些必须强调的质量属性要求呢？如表

4-8 所示，如此多的集成要求，就必然要提高系统的互操作性……

表 4-8 还要主动运用查漏法则

 功能 质量 约束

组织

业务目标、愿景

 网站定位：B2C 零售
 当前经营：图书
 未来经营：……

商业质量

 新功能上线快，随需

应变

商业约束

 投资 2000 万……
集成约束

 物流、银行、海关、实体店、

各类提供商（包括工厂等生

产企业，以及代理商等经销

企业）

用户

 运行期质量

 可伸缩性：几乎没有

上限性能：即强调速

度，又强调吞吐量
 安全性：数据安全
 持续可用性：不停机

 互操作性：含公司各

系统间互操作

开发
 开发期质量

 可扩展性

4.8 贯穿案例 39

一线架构师实践指南

4.8 贯穿案例

4.8.1 PASS系统背景介绍

PASS 系统的全称是：合理用药监测系统（Prescription Automatic Screening System）。通过全

面部署 PASS 系统可以促进医院的用药合理化、规范化，降低医院的医疗事故率，还有利于管理

部门高效全面地掌握医疗一线的用药情况，及早发现问题与解决问题。图 4-6 所示的信息有利于

读者理解 PASS 系统的应用背景。

图 4-6 卫生部发布《加强全国合理用药监测工作方案》

（信息来源：http://news.sina.com.cn/c/2009-02-08/002317168800.shtml ）

图 4-7 列出了 PASS 系统的主要功能。

图 4-7 PASS 系统的主要功能

4.8.2 需求结构化

如你所知，将“功能列表”等同于“全部需求”根本不是架构师的应有做法。相反，为了全

·医生

-用药及时监测

-注意事项打印

·管理员

-身份管理

-用药规则数据库的更新

·管理者（如院长）

-多种方式的信息查询

-多张报表

·外部系统的整合

-药政部分的信息上报

-用药规则数据库的自动更新

……

40 第 4章 需求结构化与分析约束影响

一线架构师实践指南

方位、多角度地把握需求，应当重视并运用“需求的结构”。表 4-9 为运用 ADMEMS 矩阵对 PASS

系统的需求进行结构化梳理的结果。

表 4-9 运用 ADMEMS 矩阵，对需求进行结构化梳理

主管部门

 统一监管
医院

 促进合理用药
 降低医疗事故率

 使用生命周期长
 医疗行业的关键性

业务环境约束

 支持省级管理部门监管
 药品繁多、用药规则繁多
 用药规则随着时间会被修改

用户

 医生
 院长
 管理员

 使用环境约束

 与很多医院早已部署的 HIS 系统协同

工作
 各医院 HIS 系统不统一，技术各异
 分布式的使用要求
 使用方便，避免孤立地使用 HIS 和

PASS 两套系统

 开发环境约束

 人员水平不一

4.8.3 分析约束影响

下面逐一分析约束因素的潜在影响。

首先分析业务级需求因素的影响，如表 4-10 所示。例如，既然药品的种类繁多、用药规则

的数量也很大，就应该设法避免每家医院都重复录入用药规则——于是决定“省级集中提供用药

规则的定义和更新支持”（这其实是业务流程一级的一项需求）。

表 4-10 分析约束影响：业务级需求因素的潜在影响分析

主管部门

 统一监管
医院

 促进合理用药
 降低医疗事故率

 使用生命周期长
 医疗行业的关键性

业务环境约束

 支持省级管理部门监管
 药品繁多、用药规则繁多
 用药规则随着时间会被修改
 省级集中提供用药规则服务以降低重

复录入工作量

用户

 医生
 院长
 管理员

 安全性
 持续可用性
 互操作（医院 PASS 和

省级系统）

使用环境约束

 与很多医院早已部署的 HIS 系统协同

工作
 各医院 HIS 系统不统一，技术各异
 分布式的使用要求
 使用方便，避免孤立地使用 HIS 和

PASS 两套系统

 开发环境约束

 人员水平不一

4.8 贯穿案例 41

一线架构师实践指南

采用同样的思维方式，对用户群及使用环境一级的约束进行潜在影响的分析，如表 4-11 所

示。例如作为产品的 PASS 系统要和很多医院的不同 HIS 系统整合在一起，就有可能重复开发 N

遍相同的程序部分，应通过提高“可重用性”来避免不必要的开销（否则维护起来也很不便）。

表 4-11 用户群及使用环境一级：分析约束影响

主管部门

 统一监管
医院

 促进合理用药
 降低医疗事故率

 使用生命周期长
 医疗行业的关键性

业务环境约束

 支持省级管理部门监管
 药品繁多、用药规则繁多
 用药规则随着时间会被修改
 省级集中提供用药规则服务以降低重

复录入工作量

用户

 医生
 院长
 管理员

 互操作（PASS 和 HIS
的整合）

 高性能
 易用性

使用环境约束

 与很多医院早已部署的 HIS 系统协同

工作
 各医院 HIS 系统不统一，技术各异
 分布式的使用要求
 使用方便，避免孤立地使用 HIS 和

PASS 两套系统

 可重用性 开发环境约束

 人员水平不一
 降低重复开发的工作量

一线架构师实践指南

 第 8章
 初步设计

好的开始是成功的一半。

——谚语

所谓鲁棒性分析是这样一种方法：通过分析用例规约中的事件流，

识别出实现用例规定的功能所需的主要对象及其职责，形成以职责

模型为主的初步设计。

——温昱，《软件架构设计》

ADMEMS 方法的 Conceptual Architecture 阶段包含 3 个步骤：

 第 1 步，初步设计。

 第 2 步，高层分割。

 第 3 步，考虑非功能需求。

本章讲解如何根据关键功能，借助鲁棒图进行初步设计。

8.1 初步设计对复杂系统的意义

初步设计并不总是必须的——架构师只有在设计复杂系统时才需要它。

另外，“复杂”与否还和“熟悉”程度有关。一个“很小”的系统涉及你未接触过的领域，

你会觉得它挺复杂；一个“较大”的系统，但你有很具体的经验，你依然会觉得它“Just so so”。

初步设计的目标简单而明确：那就是发现职责。初步设计无须展开架构设计细节，否则就背

上了“包袱”，这是复杂系统架构设计起步时的大忌。正如“初步设计”这个名字所暗示的，它

只是狭义的架构设计的“第一枪”——之前的 Pre-architecture 阶段并未对“系统”做任何“切分”。

72 第 8 章 初步设计

一线架构师实践指南

“初步设计”这个名字还暗示我们，后续的架构设计工作必然以之为基础。具体而言，初步

设计识别出了职责，后续的高层分割方案才有依据，因为每个“高层分割单元”都是职责的承载

体，而分割的目的也恰恰在于规划高层职责模型。

ADMEMS 方法强调“关键需求决定架构”的策略，“基于关键功能，进行初步设计”就是

一个具体体现。如第 3 章 3.4.1 节所述，系统的每个功能都是由一条“职责协作链”完成的；而

初步设计的具体思路正是“通过为功能规划职责协作链来发现职责”（如图 8-1 所示）。

图 8-1 初步设计的具体思路：运用“职责协作链”原理

8.2 鲁棒图简介

ADMEMS 方法推荐以鲁棒图来辅助初步设计。那么，什么是鲁棒图呢？

8.2.1 鲁棒图的 3种元素

鲁棒图包含 3 种元素（如图 8-2 所示），它们分别是边界对象、控制对象、实体对象：

 边界对象对模拟外部环境和未来系统之间的交互进行建模。边界对象负责接收外部输入，

处理内部内容的解释，并表达或传递相应的结果。

 控制对象对行为进行封装，描述用例中事件流的控制行为。

 实体对象对信息进行描述，它往往来自领域概念，和领域模型中的对象有良好的对应关系。

图 8-2 鲁棒图的元素

海象不是象，如此命名是因为“类比思维”在人的头脑中是根深蒂固的。关于鲁棒图 3 元素

的“类比”，自然是 MVC。在图 8-3 中，我们做了更全面地对比，我们发现鲁棒图 3 元素和 MVC

还是有着不小的差异的。

8.2 鲁棒图简介 73

一线架构师实践指南

图 8-3 鲁棒图 3 元素和 MVC 的相似与不同

由图可以看出，鲁棒图 3 元素和 MVC 的主要不同在于：

 View 仅涵盖了“用户界面”元素的抽象，而鲁棒图的边界对象全面涵盖了三种交互，即

本系统和外部“人”的交互、本系统和外部“系统”的交互、本系统和外部“设备”的

交互。

 数据访问逻辑是 Controller 吗？不是。控制对象广泛涵盖了应用逻辑、业务逻辑、数据

访问逻辑的抽象，而 MVC 的 Controller 主要对应于应用逻辑。

 MVC 的 Model 对应于经典的业务逻辑部分，而鲁棒图的实体对象更像“数据”的代名

词——用实体对象建模的数据既可以是持久化的，也可以仅存在于内存中，并不像有的

实践者理解的那样直接就等同于持久化对象。

8.2.2 鲁棒图一例

图 8-4 展示的是银行储蓄系统的“销户”功能的鲁棒图。

图 8-4 “销户”的鲁棒图

74 第 8 章 初步设计

一线架构师实践指南

为了实现销户的功能，银行工作人员要访问 3 个“边界对象”：

 活期账户销户界面。

 磁条读取设备。

 打印设备。

“销户”是一个“控制对象”，和“计算利息”一起进行销户功能的逻辑控制。

 其中，“计算利息”对“活期账户”、“利息率”、“利息税率”这 3 个“实体对象”

进行读取操作。

 而“销户”负责读出“客户资料”……最终销户的完成意味着写入“活期账户”和“销

户流水”信息。

8.2.3 历史

鲁棒图（Robustness Diagram）是由 Ivar Jacobson 于 1991 年发明的，用以回答“每个用例需

要哪些对象”的问题。

后来的 UML 并没有将鲁棒图列入 UML 标准，而是作为 UML 版型（Stereotype）进行支持。

对于 RUP、ICONIX 等过程，鲁棒图都是重要的支撑技术。当然，这些过程反过来也促进了

鲁棒图技术的传播。

8.2.4 为什么叫“鲁棒”图

也许你会问：“为什么叫‘鲁棒’图？它和‘鲁棒性’有什么关系？”

答案是：词汇相同，含义不同。

软件系统的“鲁棒性（Robustness）”也经常被翻译成“健壮性”，同时它和“容错性（Fault

Tolerance）”含义相同。具体而言，鲁棒性指当如下情况发生时依然具有正确运行功能的能力：

非法输入数据、软硬件单元出现故障、未预料到的操作情况。例如，若机器死机，“本字处理软

件”下次启动应能恢复死机前 5 分钟的编辑内容。再例如，“本 3D 渲染引擎”遇到图形参数丢

失的情况时，应能够以默认值方式呈现，从而将程序崩溃的危险度减小为渲染不正常的危险度。

而“鲁棒图（Robustness Diagram）”的作用有两点，除了初步设计之外，就是检查用例规

约是否正确和完善。“鲁棒图”正是因为第2点作用而得名的——所以严格来讲“鲁棒图（Robustness

Diagram）”所指的不是“鲁棒性（Robustness）”。

从 Doug Rosenberg 在《用例驱动的 UML 对象建模应用》的描述中，也可得到上述结论：

在 ICONIX 过程中，鲁棒分析扮演了多个必不可少的角色。通过鲁棒分析，您将改进用例文

本和静态模型。

 有助于确保用例文本的正确性，且没有指定不合理或不可能的系统行为（基于要使用的

8.2 鲁棒图简介 75

一线架构师实践指南

一组对象），从而提供了健康性检查（Sanity Check）。这种改进使用例文本的特性从纯

粹的用户手册角度变为对象模型上下文中的使用描述。

 有助于确保用例考虑到了所有必需的分支流程，从而提供了完整性和正确性检查。经验

表明，为实现这种目标，并编写出遵循某些定义良好的指南的文本，而在绘制鲁棒图上

花费的时间，将在绘制时序图时 3～4 倍地节省下来。

 有利于发现对象，这一点很重要，因为在域建模期间肯定会遗漏一些对象。您还可以发

现对象命名冲突的情况，从而避免进一步造成严重的问题。另外，鲁棒分析有利于确保

我们在绘制时序图之前确定大部分实体类和边界类。

如前所述，它缩小了分析和详细设计之间的鸿沟，从而完成了初步设计。

8.2.5 定位

在本书中，关于鲁棒图最重要的一点是：它是初步设计技术。

不要再困惑于类似“鲁棒图是分析技术，还是设计技术”这样的问题了。大家只须记住两个

公式：

 需求分析 ≠ 系统分析

 系统分析 ≈ 初步设计

关于“分析”与“设计”的区分，邵维忠教授和杨芙清院士在《面向对象的系统设计》一书

中早已做过精彩阐释：

用“做什么”和“怎么做”来区分分析与设计，是从结构化方法沿袭过来的一种观点。但即使

在结构化方法中这种说法也很勉强……

在“做什么”和“怎么做”的问题上为什么会出现上述矛盾？究其根源，在于人们对软件工程

中“分析”这个术语的含义有着不同的理解——有时把它作为需求分析（Requirements Analysis）

的简称，有时是指系统分析（Systems Analysis），有时则作为需求分析和系统分析的总称。

需求分析是软件工程学中的经典术语之一，名副其实的含义应是对用户需求进行分析，旨在产

生一份明确、规范的需求定义。从这个意义上讲，“分析是解决做什么而不是解决怎么做”是无可

挑剔的。

但迄今为止，在人们所提出的各种分析方法（包括结构化分析和面向对象分析）中，真正属于

需求分析的内容所占的分量并不太大；更多的内容是给出一种系统建模方法（包括一种表示法和相

应的建模过程指导），告诉分析员如何建立一个能够满足（由需求定义所描述的）用户需求的系统

模型。分析员大量的工作是对系统的应用领域进行调查研究，并抽象地表示这个系统。确切地讲，

这些工作应该叫做系统分析，而不是需求分析。它既是对“做什么”问题的进一步明确，也在相当

程度上涉及“怎么做”的问题。

76 第 8 章 初步设计

一线架构师实践指南

忽略分析、需求分析和系统分析这些术语的不同含义，并在讨论中将它们随意替换，是造成上

述矛盾的根源。

至于实践者为什么常将“需求分析”和“系统分析”混淆，这背后有着重要的现实原因。实

际的工程化实践中，需求捕获、需求分析、系统分析不是完全孤立进行的。相反，它们往往是相

互伴随、交叉进行的。需求工作伊始，无疑更多地是进行需求捕获工作，相伴进行的需求分析工

作占的比例偏少；但随着掌握的需求信息越来越多，我们须要开展的对需求的分析和整理工作也

越来越多了；而此时，伴随着对问题的分析，自然而然地会在高层次提出相应的应对策略……这，

恰就是系统分析工作。《软件架构设计》一书中有如下阐述：

需求捕获是获取知识的过程，知识从无到有，从少到多。需求采集者必须理解用户所从事的工

作，并且了解用户和客户希望软件系统在哪些方面帮助他们。

需求分析是挖掘和整理知识的过程，它在已掌握知识的基础上进行。毕竟，初步捕获到的需求

信息往往处于不同层次，也有一些主观甚至不正确的信息。而经过必要的需求分析工作之后，需求

更加系统、更加有条理、更加全面。

那么系统分析呢？如果说，需求分析致力于搞清楚软件系统要“做什么”的话，那么系统分

析已经开始涉及“怎么做”的问题了。《系统分析》一书中写道：

简单地说，系统分析的意义如下：“系统分析是针对系统所要面临的问题，搜集相关的资料，

以了解产生问题的原因所在，进而提出解决问题的方法与可行的逻辑方案，以满足系统的需求，实

现预定的目标。”

需求捕获、需求分析，以及系统分析之间的关系我们必须理解透彻，否则会影响工作的有效

进行。图 8-5 概括了三者之间的关系。

图 8-5 需求捕获、需求分析以，及系统分析之间的关系

再次强调，鲁棒图已经“打开”了“系统”这个“黑盒子”，将它划分成很多不同的职责，

所以它是“设计技术”。

8.3 基于鲁棒图进行初步设计的 10 条经验 77

一线架构师实践指南

8.3 基于鲁棒图进行初步设计的 10条经验

那么，如何借助鲁棒图进行初步设计呢？

ADMEMS 方法归纳了鲁棒图建模的 10 条经验要点（其中 50%是 ADMEMS 方法的原创经验，

另一半来自业界其他专家），分别覆盖语法、思维、技巧、注意事项等 4 个方面（如图 8-6 所示），

帮助一线架构师快速提升初步设计的能力。

图 8-6 鲁棒图建模的 10 条经验

下面将逐一讲解鲁棒图建模的 10 条经验。

8.3.1 遵守建模规则
图 8-7 展示了鲁棒图的建模规则。Doug Rosenberg 在《UML 用例驱动对象建模》中写道：

通过以下 4 条语句，可以理解该图的本质：

1) 参与者只能与边界对象交谈。

2) 边界对象只能与控制对象和参与者交谈。

3) 实体对象也只能与控制对象交谈。

4) 控制对象既能与边界对象交谈，也能与控制对象交谈，但不能与参与者交谈。

图 8-7 鲁棒图建模规则（图片来源：《UML 用例驱动对象建模》）

78 第 8 章 初步设计

一线架构师实践指南

8.3.2 简化建模语法

图 8-8 展示了 ADMEMS 方法推荐的鲁棒图建模的语法。在实践中，简化的鲁棒图语法将有

利于你集中精力进行初步设计，而不是关注细节——例如，鲁棒图根本不关心“IF 语句”怎么建

模。

图 8-8 鲁棒图的语法

值得注意的是，业界有些观点（包括一些书）认为鲁棒图是协作图，因此造成了鲁棒图的语

法非常复杂，不利于专注于初步设计。其实，鲁棒图是一种非常特殊的类图。

8.3.3 遵循 3种元素的发现思路

图 8-9 说明了发现鲁棒图 3 种元素的思维方式。

图 8-9 发现鲁棒图 3 种元素的思维方式

用例（Use Case）＝N 个场景（Scenario）。每个场景的实现都是一连串的职责进行协作的结

果。所以，初步设计可以通过“研究用例执行的不同场景，发现场景背后应该有哪些不同的职责”

来完成。

8.3.4 增量建模

“建模难”，有些人常如此感叹。例如，在画鲁棒图时，许多人一上来就卡在了“搞不清应

8.3 基于鲁棒图进行初步设计的 10 条经验 79

一线架构师实践指南

该有几个界面”的问题上，就会发出“建模难”的感叹。

下面演示“增量建模”这种技巧。从小处讲，增量建模能解决鲁棒图建模卡壳的问题；从大

处讲，这种方式适用于所有种类的 UML 图建模实践。

例如，类似 WinZip、WinRar 这样的压缩工具大家都用过。请一起来为其中的“压缩”功能

进行基于鲁棒图的初步设计。

首先，识别最明显的职责。对，就是你自己认为最明显的那几个职责——不要认为设计和建

模有严格的标准答案。如图 8-10 所示，你认为压缩就是把原文件变成压缩包的处理过程，于是

识别出了 3 个职责：

 原文件。

 压缩包。

 压缩器（负责压缩处理）。

图 8-10 增量建模：先识别最“明显”的职责

接下来，开始考虑职责间的关系，并发现新职责。压缩器读取原文件，最终生成压缩包——

嗯，这里可以将打包器独立出来，它是受了压缩器的委托而工作的。哦，还有字典……如图 8-11

所示。

图 8-11 增量建模：开始考虑职责间的关系，并发现新职责

继续同样的思维方式（别忘了用例规约定义的各种场景是你的“输入”，而且，没有文档化

的《用例规约》都没关系，你的头脑中有吗？）。图 8-12 的鲁棒图中间成果，又引入了压缩配

置，它影响着压缩器的工作方式，例如加密压缩、分卷压缩或其他。

80 第 8 章 初步设计

一线架构师实践指南

……最终的鲁棒图如图 8-13 所示。压缩功能还要支持显示压缩进度，以及随时取消进行了

一半的压缩工作，所以，你又识别出了压缩行进界面和监听器等职责。

模型之于人，就像马匹之于人一样——它是工具。如果你不知怎样真正将“模型”为自己所

用，反而被“建模”所累（经典的“人骑马、马骑人”的问题），请你问自己一个问题：

我是不是被太多的假设限制了思维？

或许，工具本身根本没有这样限制我！

图 8-12 增量建模：继续考虑职责间的关系，并发现新职责

图 8-13 增量建模：直到模型比较完善

8.3.5 实体对象≠持久化对象

有的书上明确地说“实体对象就是持久化对象”，这是错误的。因为实体对象涵盖更广泛，

它可以是持久化对象，也可以是内存中的任何对象。

一方面，在实践中，有些系统须要在内存中创建数据的“暂存体”以保持中间状态，这当然

可以被建模成实体对象。另一方面，有的系统没有持久化数据，但基于鲁棒图的初步设计依然可

用，此时难道鲁棒图不包含实体对象？显然不对。

因此，实体对象≠持久化对象，这个正确认识将有助于你的实践。

8.3 基于鲁棒图进行初步设计的 10 条经验 81

一线架构师实践指南

8.3.6 只对关键功能（用例）画鲁棒图

基于“关键需求决定架构”的理念，功能需求作为需求的一种类型，在设计架构时不必针对

每个功能都画出鲁棒图。

8.3.7 每个鲁棒图有 2～5个控制对象

既然是初步设计，鲁棒图建模时，针对关键功能的每个鲁棒图中的控制对象不必太多太细，

5 个是常见的上限值。

相反，若实现某功能的鲁棒图中只含 1 个控制对象，则是明显地“设计不足”——这个控制

对象的名字必然和功能的名字相同，这意味着没有对职责进行真正的切分。例如，WinZip 的压

缩功能设计成图 8-14 所示的鲁棒图，几乎没有任何意义。

图 8-14 只有一个控制对象的鲁棒图明显“设计不足”

8.3.8 勿关注细节

初步设计不应关注细节。例如，回顾前面图 8-4 所示的“销户”的鲁棒图：

 对每个对象只标识对象名，都未识别其属性和方法。

 “活期账户销户界面”，具体可能是对话框、Web 页面、字符终端界面，但鲁棒图中没

有关心这些细节问题。

 “客户资料”等实体对象须要持久化吗？不关心，更不关心用 Table 还是用 File 或其他

方式持久化。

 没有标识控制流的严格顺序。

8.3.9 勿过分关注 UI，除非辅助或验证 UI设计

过分关心 UI，会陷入诸如有几个窗口，是不是有一个专门的结果显示页面等诸多细节之中，

初步设计就没法做了。

别忘了，初步设计的目标是发现职责。初步设计无须展开架构设计细节，否则就背上了“包

袱”，这是复杂系统架构设计起步时的大忌。

82 第 8 章 初步设计

一线架构师实践指南

8.3.10 鲁棒图≠用例规约的可视化

鲁棒图是设计，“系统”已经被切分成不同的职责单元。而用例规约是需求，其中出现的“系

统”必定是黑盒（如图 8-15 所示）。所以，两者有本质区别。

图 8-15 一个用例规约示例：需求意味着系统保持黑盒

8.4 贯穿案例

接下来考虑本书的贯穿案例 PASS 系统，如何借助鲁棒图进行初步设计呢？

再次明确以下几点：

 初步设计的目标是发现职责，为高层切分奠定基础。

 初步设计不是必须的，但当待设计系统对架构师而言并无太多直接经验时，则强烈建议

进行初步设计。

 基于关键功能（而不是对所有功能），借助鲁棒图（而不是序列图）进行初步设计。

下面，一起思考如何针对“实时检查处方”功能进行初步设计——重点体会“增量建模”的

自然和强大。

首先，识别最明显的职责。如图 8-9 所示，先识别出了最不可或缺的、体现整个功能价值所

在的与“处方检查结果”相关的几个职责。

8.4 贯穿案例 83

一线架构师实践指南

图 8-16 实时检查处方：先识别最明显的职责

接下来开始考虑职责间的关系，并发现新职责。检查结果是如何产生的呢？检查这个控制对

象，读取处方和用药规则信息，最终生成了处方检查结果。如图 8-17 所示。

图 8-17 实时检查处方：开始考虑职责间的关系，并发现新职责

OK，如此一来，解决了“结果是怎么来的”这个问题。如图 8-18 所示。

图 8-18 实时检查处方：开始考虑职责间的关系，并发现新职责

继续以同样的思维方式解决问题。如图 8-19 所示，PASS 系统自动检查处方，是由 HIS 系统

中医生工作站的调用触发的，处方信息也是通过某种方式（例如参数或 XML 文件）从 HIS 医生

工作站获得的。

图 8-19 实时检查处方：继续考虑职责间的关系，并发现新职责

84 第 8 章 初步设计

一线架构师实践指南

实时检查处方最终的鲁棒图如图 8-20 所示，它又进一步考虑了“记录违规用药”这一具体

功能场景的支持。

如前文所述，概念架构设计时推荐只对关键功能进行鲁棒图建模。例如，另一个关键功能“自

动更新用药规则”的鲁棒图如图 8-21 所示。

图 8-20 实时检查处方：直到模型比较完善

图 8-21 自动更新用药规则：基于鲁棒图的初步设计

一线架构师实践指南

 第 13章
逻辑架构

有没有一种方法在大产品和小团队之间的缺口上架起一座桥梁呢？答案是肯

定的，有！那就是架构。架构最重要的一点，就是它能把难以处理的大问题分

解成便于管理的小问题。

——Eric Brechner，《代码之道》

一流是每个程序设计人员向往并为之奋斗却又无法具体说出的、难以达到的境

界。一流的软件非常简明。它灵活而清晰，能通过创造性的机制解决复杂的问

题，这些机制语义丰富，可应用于其他可能完全无关的问题。一流意味着寻求

恰当的抽象，意味着通过新的途径合理利用有限的资源。

—— Grady Booch，《面向对象项目的解决方案》

划分子系统、定义接口……，这些典型工作都属于逻辑架构设计的范畴。

本章阐释 ADMEMS 5 视图方法中逻辑架构视图的设计：

 先从划分子系统的 3 种必用手段讲起；

 随后，纠正“我的接口我做主”这种错误认识，代之以“协作决定接口”的正确理解；

 而且，本章将解析逻辑架构设计的整体思维套路，解决一线架构师郁闷已久的“多视

图方法只讲做什么、不讲怎么做”的问题；

 最后，总结逻辑架构设计的 10 条经验要点。

13.1 划分子系统的 3种必用策略

一线架构师最缺的不是理论，也不是技术，而是位于理论和技术之间的“实践策略”和“实

践套路”。

120 第 13章 逻辑架构

一线架构师实践指南

就划分子系统这个架构师必做的工作而言，其实践策略可归纳为 3 种：

 分层的细化。

 分区的引入。

 机制的提取。

13.1.1 分层（Layer）的细化

分层是最常用的架构模式，而笔者进一步认为：在架构设计初期，100%的系统都可以用分

层架构，就算随着设计的深入而采用了其他架构模式也未必和分层架构矛盾。

于是，架构师在划分子系统时常受到初期分层方式的影响——实际上，很多一线架构师最熟

知、最自然的划分子系统的方式就是：分层的细化。

例如，图 13-1 说明了基于 3 层架构进行“分层细化”的一种方式。

图 13-1 基于 3 层架构进行“分层细化”的一种方式

3 层架构或 4 层架构的“倩影”经常出现在投标时，或者市场彩页中，于是有人戏称之为“市

场架构”。的确，直接用 3 层架构或 4 层架构来支持团队的并行开发是远远不够的。所以，“分层

的细化”是划分子系统的必用策略之一，架构师们不要忘记。

13.1.2 分区（Partition）的引入

序幕才刚刚拉开，划分子系统的工作还远远没有结束。

迭代式开发挺盛行，但所有真正意义上的迭代开发，都必须解决这样一个“困扰”：如果架

构设计中只有“层”的概念，以“深度优先”的方式完成一个个具体功能就是不可能的！如图 13-2

所示，就是一线程序员们经常遇到的烦恼。

13.1 划分子系统的 3种必用策略 121

 一线架构师实践指南

图 13-2 只有分层，如何迭代开发呢？

例如《代码之道》一书中就论及了这一点：

为了得到客户经常性的反馈，快速迭代有个基本前提：开发应该“深度优先”，而不是“广

度优先”。

广度优先极端情况下意味着对每一个功能进行定义，然后对每个功能进行设计，接着对每个

功能进行编码，最后才对所有功能一起进行测试。而深度优先极端情况下意味着对每个功能完整

地进行定义、设计、编码和测试，而只有当这个功能完成了之后，你才能做下一个功能。当然，

两个极端都是不好的，但深度优先要好得多。对于大部分团队来说，应该做一个高级的广度设计，

然后马上转到深度优先的底层设计和实现上去。

为了支持迭代开发，逻辑架构设计中必须（注意是必须）引入分区。分区是一种单元，它位

于某个层的内部，其粒度比层要小。一旦架构师针对每个层进行了分区设计，“深度优先”式的

迭代开发就非常自然，图 13-3 说明了这一点。

图 13-3 架构中引入分区（Partition），支持迭代开发

架构是迭代开发的基础。架构师若要在“支持迭代”方面不辱使命，必须注重“分区的引入”——

这也是划分子系统的必用策略之一。

13.1.3 机制的提取

Grady Booch 在他的著作中指出：

机制才是设计的灵魂所在……否则我们就将不得不面对一群无法相互协作的对象，它们相互

122 第 13章 逻辑架构

一线架构师实践指南

推搡着做自己的事情而毫不关心其他对象。

机制之于设计是如此地重要。那么，什么是机制呢？

本书为“机制”下的定义是：软件系统中的机制，是指预先定义好的、能够完成预期目标的、

基于抽象角色的协作方式。机制不仅包含了协作关系，同时也包含了协作流程。

对于面向对象方法而言，“协作”可以被定义为“多个对象为完成某种目标而进行的交互”，

而“协作”和“机制”的区别可以概括为：

基于接口（和抽象类）的协作是机制，基于具体类的协作则算不上机制。

图 13-4 与图 13-5 显示了协作与机制的不同。

图 13-4 直接组装也称为协作

图 13-5 基于抽象角色的协作才可称为机制

对于编程实现而言，在没有提取机制的情况下，机制是一种隐式的重复代码——虽然语句直

接比较并不相同，但是很多语句只是引用的变量不同，更重要的是大段的语句块结构完全相同。

如果提取了机制，它在编程层面体现为“基于抽象角色（OO 中就是接口）编程的那部分程序”。

对于逻辑架构设计而言，机制是一种特殊的子系统——架构师在划分子系统时不要遗忘这点。

最容易理解的子系统，是通过“直接组装”粒度更小的单元来实现软件“最终功能”的子系统；

13.1 划分子系统的 3种必用策略 123

 一线架构师实践指南

相比之下，作为子系统的机制并不能“直接实现”软件的“最终功能”。在实现不同的最终功能

时，可以重用同一个机制，避免重复进行繁琐的“组装”工作。例如，如图 13-6 所示，网络管

理软件中拓扑显示和告警通知都可利用消息机制。

图 13-6 提取通用机制的示例

13.1.4 总结：回顾《软件架构设计》提出的“三维思维”

至此，我们讨论了划分子系统的 3 种手段：分层的细化、分区的引入、机制的提取。通过这

3 种手段的综合运用，就可更理性、更专业地展开逻辑架构的设计，如图 13-7 所示。

图 13-7 划分子系统必须三管齐下，综合运用 3 种手段

笔者曾在《软件架构设计》一书中阐述：

如何通过关注点分离来达到“系统中的一部分发生了改变，不会影响其他部分”的目标呢？

首先，可以通过职责划分来分离关注点。面向对象设计的关键所在，就是职责的识别和分配。

每个功能的完成，都是通过一系列职责组成的“协作链条”完成的；当不同职责被合理分离之后，

为了实现新的功能只须构造新的“协作链条”，而需求变更也往往只会影响到少数职责的定义和

实现……

其次，可以利用软件系统各部分的通用性不同进行关注点分离。不同的通用程度意味着变化

的可能性不同，将通用性不同的部分分离有利于通用部分的重用，也便于对专用部分修改……

另外，还可以先考虑大粒度的子系统，而暂时忽略子系统是如何通过更小粒度的模块和类组

成的……

124 第 13章 逻辑架构

一线架构师实践指南

架构设计关注点分离原理如图 13-8 所示。

图 13-8 架构设计关注点分离原理示意图

图 13-8 总结了上述的架构设计关注点分离原理。可以说，根据职责分离关注点、根据通用

性分离关注点、根据不同粒度级别分离关注点是三种位于不同“维度”的思维方式，所以在实际

工作中必须综合运用这些手段。

于是，不难理解分层的细化、分区的引入、机制的提取这 3 种划分子系统手段之间的关系：

它们处在思维的 3 个维度上。

首先，分层和机制位于不同的维度：职责维及通用维（如图 13-9 所示）。

图 13-9 分层和机制位于不同的维度

另外，是否引入分区，设计所“覆盖”的 Scope 是完全相同的。原因是层的粒度较大，而层

内部引入的分区的粒度更小，便于组合出一个个功能（支持迭代开发）。这是第三维：粒度（如

图 13-10 所示）。

13.1 划分子系统的 3种必用策略 125

 一线架构师实践指南

图 13-10 粒度维：分区的引入

看来，分层的细化、分区的引入、机制的提取这 3 个手段不是相互替代的关系，而是相辅相

成的关系。实践中，架构师应三管齐下，综合运用。

13.1.5 探究：划分子系统的 4个重要原则

重要的内容就值得多讲几遍，但我会换角度。

下面是分层的细化、分区的引入、机制的提取这 3 种策略背后的 4 个通用设计原则：

 职责不同的单元划归不同子系统。

 通用性不同的单元划归不同子系统。

 需要不同开发技能的单元划归不同子系统。

 兼顾工作量的相对均衡，进一步切分太大的子系统。

如图 13-11 所示，子系统的每种划分策略，都是一到多个原则综合作用的结果。

图 13-11 3 种子系统划分策略背后的 4 大原则

126 第 13章 逻辑架构

一线架构师实践指南

13.2 接口设计的事实与谬误

世界是复杂的，很多东西难以直接获得。例如，直接追求幸福，是永远追不到的。（《乐在工

作》一书中说幸福是副产品。）

殊不知，合理的接口设计也不是“直接”得到的。

由于面向对象非常强调“自治”，许多人不知不觉地形成了一种错误认识：面向对象推崇“我

的接口我做主”。很遗憾，“自治”正确，但“我的接口我做主”这个推断是错误的。

软件世界中本无模块。1968 年，Dijkstra 发表了第 1 篇关于层次结构的论文《The Structure of

THE—multiprogramming System》。1972 年，Parnas 发表论文《On the criteria To Be Used in

Decomposing System into Modules》论及了模块化和信息隐藏的话题……这些是架构学科开始萌

芽的标志。

那么，为什么要对软件进行模块化设计呢？是为了解决复杂性更高的大问题。于是，我们突

然领悟：对问题进行分解，分别解决小问题，其实这只是手段。每个架构师应牢记：

“分”是手段，“合”是目的。不能“合”在一起支持更高层次功能的模块，又有何用呢？

因此，我们必须把模块放在协作的上下文之中进行考虑。架构师设计接口时，要考虑的重点

是“为了实现软件系统的一系列功能，这个软件单元要和其他哪些单元如何协作”，总结成一句

话就是：

协作决定接口。

相反，直接设计接口，是很多“面向接口的”架构依然拙劣的原因之一。类似“我的接口我

做主”的观点是错误的（如图 13-12 所示），每个模块或子系统（甚至类）无视协作需要而进行

的接口定义很难顺畅地被其他模块或子系统使用。

图 13-12 协作决定接口，“我的接口我做主”的观点是错误的

“世界上最短的距离不是直线”，又多了一个例证。

13.3 逻辑架构设计的整体思维套路 127

 一线架构师实践指南

13.3 逻辑架构设计的整体思维套路

13.3.1 整体思路：质疑驱动的逻辑架构设计

要点如下：

 质疑驱动。

 结构设计和行为设计相分离。

罗马不是一日建成的。需求对架构设计的“驱动”作用，是伴随着架构师“不断设计中间成

果→不断质疑中间成果→不断调整完善细化中间成果”的过程渐进展开的。打个比方，需求就像

“缓释胶囊”，功能、质量、约束这 3 类“药物成分”的药力并不是一股脑释放的，而是缓缓释

放的——“缓释”的控制者必然是人，是架构师。

请看图 13-13 所示的“药力释放机理”——逻辑架构设计的整体思维套路。

图 13-13 逻辑架构设计的整体思维套路

先考虑结构方面的切分。手段是上面所讲分层的细化、分区的引入、机制的提取。

然后，让切分出的职责协作起来，验证能否完成功能。这个工作，可以借助序列图进行。

此时，结构和行为方面各进行了一定的设计，就应开始质疑自己的设计。架构师要从两个角

度质疑：

 功能方面，特殊的功能支持吗？

 质量方面，耦合性、重用性、性能等怎么样？

如此循环思维，不断将设计推向深入……其间，会涉及接口的定义，ADMEMS 方法建议用

128 第 13章 逻辑架构

一线架构师实践指南

“包—接口图”作为从结构到行为过渡的桥梁，从而识别接口。至于接口的明确定义（接口包含

的方法为何），则要进一步考虑基于职责的具体交互过程。

13.3.2 过程串联：给初学者

第 1 步，根据当前理解切分（如图 13-14 所示）。质疑驱动的逻辑架构设计整体思路，是从

运用分层的细化、分区的引入、机制的提取进行子系统划分开始的。

图 13-14 第 1 步：根据当前理解切分

第 2 步，找到某功能的参与单元（如图 13-15 所示）。若找不到或明显缺单元，就可以直接

返回第 1 步了，以补充遗漏的职责单元。

图 13-15 第 2 步：找到某功能的参与单元

第 3 步，让它们协作完成功能（如图 13-16 所示）。研究第 2 步找到的参与单元之间的协作

关系，看看能否完成预期功能，完成得怎么样？

图 13-16 第 3 步：让它们协作完成功能

13.3 逻辑架构设计的整体思维套路 129

 一线架构师实践指南

第 4 步，质疑并推进设计的深入（如图 13-17 所示）。通过质疑“对不对”和“好不好”，可

以发现新职责，或者调整协作方式。这意味着，第 1 步的子系统切分方案被调整、被优化……如

此循环。

图 13-17 第 4 步：质疑并推进设计的深入

13.3.3 案例示范：自己设计MyZip

图 13-18 所示为 MyZip 的概念架构设计。它将和需求一起，影响 MyZip 的细化架构设计。

图 13-18 MyZip 的概念架构设计

下面，主要演示如何以质疑驱动的思路，设计 MyZip 的逻辑架构视图。

首先，考虑结构方面的切分，如图 13-19 所示。不难看出，3 种划分子系统的手段都运用了：

 分层的细化。压缩实现层从原来的压缩控制层中分离出来。回忆本章所讲的“子系统

划分策略背后的 4 大原则”。无论是从职责不同的角度，还是从所需技能的角度考虑，

两者都应该分离成为单独的“子系统”。

 分区的引入。界面交互层必须进一步分区，例如：支持右键菜单的“Windows 外壳扩

展”部分被独立。

130 第 13章 逻辑架构

一线架构师实践指南

 机制的提取。例子是智能缓冲机制，它应该成为一个通用性的基础子系统。同时，为

了使它可重用，缓冲区不负责“缓冲区已满”时的具体处理而是回调外部单元进行。

再者，为了提高使用友好性，缓冲区具有一定“智能”，它会自动保存溢出的部分，从

而简化使用缓冲区的接口。

图 13-19 MyZip 逻辑架构设计：首先考虑结构方面的切分

然后，让切分出的职责协作起来，验证能否完成功能。图 13-20 所示的序列图即为一例，初步

回答“能协作以支持压缩吗”的问题。请读者看图 13-19，回忆本书提倡的“增量建模”技巧——

不要急于“一口吃个胖子”。

图 13-20 MyZip 逻辑架构设计：协作以验证能否完成“压缩”功能

13.3 逻辑架构设计的整体思维套路 131

 一线架构师实践指南

如此循环，早晚要定义子系统的接口。图 13-21 是包-接口图，帮助架构师明确需要哪些接口

（还没有到接口内方法定义一级）。

图 13-21 MyZip 逻辑架构设计：包-接口示意图

再次从结构设计跳到行为设计。现在该更明确地考虑压缩了，图 13-22 演示了 ZipOneFile 的

设计。同样，遵循“先大局，后局部”的设计原则。具体设计决策是，让“控制”担负 ZipOneFile

的职责，而不是让“压缩实现”来担负——原因是希望“压缩实现”不须感知 File 的概念而能够

更大程度上被重用（例如对数据包而非文件进行压缩）。

图 13-22 MyZip 逻辑架构设计：每个文件相关的压缩处理

132 第 13章 逻辑架构

一线架构师实践指南

图 13-23 所示的行为设计，离明确接口的方法级定义的目标就不远了……

图 13-23 MyZip 逻辑架构设计：每个文件相关的压缩处理（续）

13.4 更多经验总结

13.4.1 逻辑架构设计的 10条经验要点

图 13-24 归纳了 ADMEMS 方法推荐的逻辑架构设计的 10 条经验要点，其中：如何划分子系

统，如何定义接口，如何运用质疑驱动的思维套路等已介绍，其他几点仅在后续小节进行简述。

图 13-24 逻辑架构设计的 10 条经验要点

13.4 更多经验总结 133

 一线架构师实践指南

13.4.2 简述：逻辑架构设计中设计模式应用

设计模式是 Class Level 的设计，它如何用于架构一级的设计呢？

基本观点是：让 Class 和 SubSystem 搭上关系。不难理解，设计模式用于架构设计主要有两

种方式：

 明确子系统内的结构。

 明确包间的协作关系。

如何做呢？答案是灰盒包图。图 13-25 说明了灰盒包图的意义，它打破了“子系统黑盒”，

关心子系统中的关键类，从而可以更到位地说明子系统之间的协作关系，并成为设计模式应用的

基础。

图 13-25 灰盒包图在逻辑架构思维中的“位置”

例如，对比图 13-26 和图 13-27——背景是项目管理系统甘特图展现的问题。后者明确了子

系统之间的交互机制，还显式地说明了 Adapter 设计模式的应用——这就是灰盒包图的价值。

图 13-26 黑盒包图：设计不足

134 第 13章 逻辑架构

一线架构师实践指南

图 13-27 灰盒包图：聪明地折衷

13.4.3 简述：逻辑架构设计的建模支持

工欲善其事，必先利其器。在实践中必须选择最合适的模型，甚至做一些改造工作使 UML 更适

合特定的实践目的。例如，灰盒包图就是一种“专门说明重要子系统设计”的 UML 图的应用。

另外，包—接口图是类图的一种特定形式，它包含“包（package）”和“接口（interface）”

两种主要元素。这种图（可参考图 13-20）的作用很专一：说明包之间的协作需要哪些接口。逻

辑架构设计中，包—接口图式是从结构设计到行为设计的思维桥梁。

最后，本章讲“逻辑架构设计的整体思维套路”时已亮明了观点：逻辑架构的设计，应该使

结构设计和行为设计相分离。这样才利于更有效地思维。不信？请看图 13-28 所示的“设计图”

（这是很多设计者习惯的思维方式）。思维清楚吗？思维混乱的原因：将结构和行为过多地混在

了一起。

图 13-28 思维混乱的原因：将结构和行为过多地混在了一起

本书推荐用序列图（它较专注于行为设计）辅助逻辑架构设计，尽量不要用协作图（虽然在

UML 1.4 中，它和序列图等价，但从形式上它的“结构气”太重）。

13.5 贯穿案例 135

 一线架构师实践指南

13.5 贯穿案例

下面，继续本书的贯穿案例：PASS 系统的架构设计。首先应注意两点：

第一，细化架构设计的重要“输入”之一是概念架构设计，不应忽视，毕竟细化架构设计是

整个架构设计过程中的一个阶段。例如，在第 9 章进行的“基于鲁棒图的初步设计”，以及第 9

章进行的高层分割考虑（如图 13-29 所示）。

图 13-29 （重复图 9-17）概念架构的思考常为逻辑视图设计提供基础

第二，5 视图方法的运用，总体而言是 5 个视图的设计穿插进行的，对复杂系统而言，根本

不可能将逻辑视图设计完全之后再考虑其他视图。而本例的 PASS 系统具有很强的分布特点，所

以必然较早地考虑到物理视图对逻辑设计的影响。例如，PASS 服务器作为一个物理架构元素的

“节点（Node）”，它之上“跑”的逻辑架构元素“逻辑层（Layer）”有哪些呢？如图 13-30 所示，

它包含了业务层、集成层、数据访问层，但未包括展现层程序。

136 第 13章 逻辑架构

一线架构师实践指南

图 13-30 有 3 个 Layer 映射到作为物理节点的 PASS Server

进入细化架构阶段的逻辑架构设计，常以初步设计为基础，借助分层细化、分区引入、机制

提取等手段。如图 13-31 所示，对 PASS 服务器软件进行逻辑架构的结构设计。

图 13-31 PASS Server 的逻辑架构设计（中间成果）

从结构设计跳到行为设计，常用手段是画序列图。图 13-32 是“实时检查处方功能”的序列

图——它处在逻辑架构设计的“螺旋式”整体思维套路的起始循环，是进一步深入设计的基础。

图 13-32 实时检查处方功能：最初的序列图

13.5 贯穿案例 137

 一线架构师实践指南

有了不同职责单元之间具体的协作关系，就可以展开细致的“质疑”了——别忘了，架构设

计是质疑驱动的（相关标注同样显示在图 13-32 上）。

 处方检查服务能被医生工作站访问到吗？毕竟前者位于 PASS 服务器上……于是，设计

中要进一步明确“远程调用机制”。

 这样一个分布式的系统，访问服务之前要经过什么样的验证呢……于是，进一步考虑

安全性的支持。

 不同的医生不停地开处方，处方检查功能会不会很慢？常用药的用药规则应该常驻内

存，这样才能提升性能……于是，设计中要进一步明确 Cache 等提升性能的机制。

 ……

于是，自然而然地，沿着逻辑架构设计的“螺旋式”整体思维套路思考，我们就能意识到“结

构设计”要继续完善和细化。基于对远程调用、安全性、高性能的质疑，改进“结构设计”后就

得到如图 13-33 所示的逻辑架构图。

图 13-33 改进之后的逻辑架构

一线架构师实践指南

 第 15章
 数据架构的难点：数据分布

压力、没时间进行充分测试、含糊不清的规格说明……无论多努力工

作，还是会有错误。不过，造成无法挽回失败的，是数据库设计错误

和架构选择错误。

——Stéphane Faroult，《SQL 语言艺术》

针对不同的领域，由于信息资源类型及其存在的状态不同，信息资源

整合的需求存在较大差异。

——彭洁，《信息资源整合技术》

确定数据分布方案是数据架构设计的难点。越是大系统，数据分布越关键。因此，一线架构

师迫切须要建立数据分布策略的大局观。

本章结合案例，讲解如何运用数据分布的 6 种具体策略。

15.1 数据分布的 6种策略

所谓分布式系统，不单单是程序的分布，还涉及数据的分布。而且，处理数据分布问题常常

更加棘手。

根据系统数据产生、使用、管理等方面的不同特点，常采用不同的数据分布式存储与处理手

段。总体而言，可以归纳为以下 6 种策略：

 独立 Schema（Separate-schema）。

 集中（Centralized）。

 分区（Partitioned）。

154 第 15章 数据架构的难点：数据分布

一线架构师实践指南

 复制（Replicated）。

 子集（Subset）。

 重组（Reorganized）。

15.1.1 独立 Schema（Separate-schema）

当一个大系统由相关的多个小系统组成，且不同小系统具有互不相同的数据库 Schema 定义，

这种情况称为“独立 Schema”。

图 15-1 所示的示意图，说明了独立 Schema 方式的理解要点——“Application 不同，Schema

不同”。

图 15-1 数据分布策略“独立 Schema”示意图

如果可以，架构师应首选此种数据分布策略，以减少系统之间无谓的相互影响，避免人为地

将问题复杂化。

15.1.2 集中（Centralized）

指一个大系统必须支持来自不同地点的访问，或者该系统由相关的多个小系统组成，而持久

集中化数据进行集中化的、统一格式的存储。

如图 15-2 所示，该方式的特点可用“集中存储、分布访问”来概括。

图 15-2 数据分布策略“集中”示意图

15.1 数据分布的 6种策略 155

 一线架构师实践指南

15.1.3 分区（Partitioned）

分区方式包含水平分区和垂直分区两种类型。

当系统要为“地域分布广泛的用户”提供“相同的服务”时，常常采用水平分区策略。如图

15-3 所示，水平分区的特点可以概括为“两个相同，两个不同”——相同的应用程序、不同的应

用程序部署实例（instance），相同的数据模型、不同的数据值。

图 15-3 “水平分区”示意图

在实践中，水平分区的应用非常广泛，而垂直分区的作用相比之下要小得多。图 15-4 说明

了垂直分区方式的特点：不同数据节点的 Schema 会有“部分字段（Field）”的差异，但可以从同

一套总的数据 Schema 中抽取得到。

图 15-4 “垂直分区”示意图

另外，须要特别说明的是，本节所讲的“分区”不是指 DBMS 支持的“分区”内部机制——

后者作为一种透明的内部机制，编程开发人员感觉不到它的存在，常由 DBA 引入；而本节所讲

“分区”会影响到编程开发人员，或者应用部署工程师，一般由架构师引入。

156 第 15章 数据架构的难点：数据分布

一线架构师实践指南

15.1.4 复制（Replicated）

在整个分布式系统中，数据保存多个副本，并且以某种机制（实时或快照）保持多个数据副

本之间的数据一致性，这就是复制方式的数据分布策略。如图 15-5 所示。

图 15-5 数据分布策略“复制”示意图

15.1.5 子集（Subset）

“子集”是“复制”的特殊方式，就是某节点因功能或非功能考虑而保存全体数据的一个相

对固定的子集，如图 15-6 所示。

图 15-6 数据分布策略“子集”示意图

总体而言，子集方式和复制方式有着非常类似的优点：

 通过数据“本地化”，提升了数据访问性能。

 数据的专门副本，利于有针对性地进行优化（例如：支持大量写操作的 DB 副本应减

少 index，而以读为主的 DB 副本可设更多 index）。

 数据的专门副本，便于提高可管理性，加强安全控制。

不过，实践中常优先考虑子集方式，因为它与复制方式相比有两大优势：

 减少了跨机器进行数据传递的开销。

 降低了数据冗余，节省了存储成本。

15.1.6 重组（Reorganized）

业务决定功能，功能决定模型。当遇到数据模型不同时，一般都能够从功能差异的角度找到

答案。

15.2 数据分布策略大局观 157

 一线架构师实践指南

重组这种数据分布策略，就是不同数据节点因要支持的功能不同，而以不同的 Schema 保存

数据——但本质上这些数据是同源的。于是，重组策略须要进行数据传递，但不是数据的“原样

儿”复制，而是以“重新组织”的格式进行传递或保存，如图 15-7 所示。

图 15-7 数据分布策略“重组”示意图

根据典型的应用背景，本书将重组分为两种类型：统计性重组、结构性重组。

例如，如果总公司只须要掌握各分公司的财务、生产等概况信息，那么就不须要把下面的数

据原样复制到总公司节点，而是通过分公司应用对信息进行统计后上报。这叫“统计性重组”——

数据的重新组织较多地借助了抽取、统计等操作，并形成新的数据格式。

“结构性重组”的例子，最典型的就是 BI 系统。生产系统的数据被进行整体重组，增加各

种利于查询的维度信息，并以新的数据 Schema 保存供 BI 应用使用。

15.2 数据分布策略大局观

没有大局观，就很难理性选择数据分布的策略。因此，我们来总体对比 6 种数据分布策略的

相同点及不同点。

15.2.1 6种策略的二维比较图

一图胜千言，再次借助图来揭示“复杂背后的简单”，如图 15-8 所示。

图 15-8 6 种策略的二维比较图

158 第 15章 数据架构的难点：数据分布

一线架构师实践指南

如图 15-8 所示，根据系统的特点不同，架构师所规划的数据分布策略无非分为两种方式：

非复制方式、复制方式。

非复制方式包括 3 种具体策略：集中、分区、独立 Schema。

复制方式也包括 3 种具体策略：复制、子集、重组。

图中的另一个对比视角是：数据节点的 Schema 是否相同。其中，独立模式和重组两种方式，

像它们的名字暗示的那样采用了不同的数据 Schema，而集中、分区、复制、子集这 4 种方式统

一使用了相同的数据 Schema。

15.2.2 质量属性方面的效果对比

选择数据分布策略，应特别关注它们在质量属性方面的效果。

下面进行“冠军评选”，看看哪些策略分别在可靠性、可伸缩性、通信开销、可管理性，以

及数据一致性等方面表现最佳（如表 15-1 所示）。

表 15-1 可靠性、可伸缩性、可管理性比较示意图

 可靠性 可伸缩性 通信开销 可管理性 数据一致性

独立 Schema

集中 + +
分区（指水平分区） +

复制 +
子集
重组

可靠性冠军：复制。冗余不利于修改，但有利于可靠性。总体而言，复制方式的数据分布策

略是可靠性的冠军。

其实，复制方式的可靠性和最终的“复制机制”密切相关，例如每天以快照方式来同步数据，

不如实时同步的可靠性高。

可伸缩性冠军：（水平）分区。Scale Up 会随着服务规模的增大变得越来越昂贵，而且它是

有上限的。对超大规模的系统而言，Scale Out 是必由之路。而（水平）分区的数据分布策略非常

方便支持 Scale Out。

有的文献上说“复制”方式对可伸缩性的支持也非常高，这种观点只对了一半——当数据以

只读式“消费”为主时，通过复制增加服务能力的效果才好，否则为保证数据一致性而进行的“写

复制”会消耗不少资源。

通信开销冠军：独立 Schema。独立 Schema“得这个奖”是实至名归。这很容易理解，既然

独立 Schema 方式强调“将一组数据与它关系密切的功能放在一起”的高聚合原则，那么覆盖不

同功能范围的应用之间就是松耦合的——用于传递数据的通信开销自然就小了。

可管理性冠军：独立 Schema。是的，还是它！由专门的数据 Schema 分别支持不同的应用功

15.3 数据分布策略的 3条应用原则 159

 一线架构师实践指南

能，它们是相对独立的，便于进行备份、调整、优化等管理活动。

因此，本章前面提到：“如果可以，架构师应首选此种数据分布策略，以减少系统之间无谓

的相互影响，避免人为地将问题复杂化。”

可管理性冠军（并列）：集中。为什么会存在“并列冠军”呢？因为从绝对角度评价可管理

性是没有实际意义的。对采用了“数据大集中”的超大型系统而言，数据中心的管理工作依然颇

具挑战性，但相对于分散的存储方式而言可管理性已大有改观。可管理性应该视原始问题的复杂

程度而论，是相对的，而不是绝对的。

数据一致性冠军：集中。所有用户面对同样的数据，免去了修改同一数据不同实例的“麻烦”，

便于保证数据的一致性。

15.3 数据分布策略的 3条应用原则

至此，我们已全面了解了数据分布的 6 种策略。下面，借助案例介绍数据分布 6 大策略的 3

条应用原则：

 把握系统特点，确定分布策略（合适原则）。

 不同分布策略，可以综合运用（综合原则）。

 从“对吗”、“好吗”两方面进行评估优化（优化原则）。

15.3.1 合适原则：电子病历 vs. 身份验证案例

合适的才是最好的。“把握系统特点，确定分布策略”，这是再明白无误的基本原则了。

医疗信息化中的电子病历可以复制，而各种系统常涉及的身份管理信息最忌讳复制。但为什

么呢？

一句话，这是由系统的特点决定的。病历常作为医生诊断和治疗疾病的依据，是很有价

值的资料。通过电子病历，可以将医务人员对病人患病经过和治疗情况所作的文字记录数

字化，因此，电子病历的基本内容属于只读数据。为解决下列问题，电子病历可采用复制策略

（例如在全省设置 3 个电子病历数据中心）：

 各医院地域分布广，容易受到各种网络传输问题的干扰。

 如果不能使用专网，还要考虑“跨网络”性能差的问题。

相反，身份管理信息不适合采用复制方式。用户信息有很强的修改特性：

 新用户注册，意味着将有数据 Insert 操作。

 用户修改密码或其他信息时，将有 Update 操作……

160 第 15章 数据架构的难点：数据分布

一线架构师实践指南

这时，如果采用复制，会造成大量数据同步操作。

所以，身份管理信息要集中，电子病历可以通过复制来提升性能和可访问性。如图 15-9 所示。

图 15-9 把握系统特点，确定分布策略（合适原则）

15.3.2 综合原则：服务受理系统 vs. 外线施工管理系统案例

当系统比较复杂时，其数据产生、使用、管理等方面可能很难表现出“压倒性”的特点。

此时，就须要考虑综合运用不同数据分布策略。

电信 BOSS（业务运营支撑系统）是电信运营商的一体化支持系统，它主要由网络管理、系

统管理、计费、营业、账务和客户服务等部分组成。信息资源共享是 BOSS 系统规划时的核心问

题之一。

图 15-10 所示，为客户申请服务开通所涉及的业务流程。

15.3 数据分布策略的 3条应用原则 161

 一线架构师实践指南

图 15-10 客户申请服务开通所涉及的业务流程

其中自己“服务受理系统”和“外线施工管理系统”两个系统所覆盖的业务是相对独立的，

各有自己的业务数据，采用“独立 Schema”这种数据分布策略非常合适。至于两个系统之间存

在互操作的关系，通过远程服务调用等形式支持即可。

单就“S 市电信服务受理系统”而言，应采用什么数据分布策略呢？考虑系统欲达到以下目

标：

 服务受理系统，应提供跨全市各辖区的、统一的服务。这意味着，在全市任何一家营

业厅，都应该可以受理任何一个小区的电话开通业务。

 例如，一个客户在浦东区居住，但在杨浦区上班，服务受理系统必须支持该客户在杨

浦区申请开通浦东区某小区的一部固定电话。

 ……

所以，数据应集中。

再考虑“外线施工管理系统”。从业务角度，外线工作是典型的“划片分管”模式，一般由

支局负责。所以，推荐外线施工管理系统“开发一套，多点部署”——数据分布策略是：水平分

区。

总结一下，本例综合应用了 3 种数据分布策略（如图 15-11 所示）：

 独立 Schema——服务受理系统和外线施工管理系统的数据相互独立。

 数据集中——服务受理系统。

 水平分区——外线施工管理系统。

162 第 15章 数据架构的难点：数据分布

一线架构师实践指南

图 15-11 不同分布策略，可以综合运用（综合原则）

15.3.3 优化原则：铃声下载门户案例

架构设计是一个过程，合理的架构往往需要团队甚至外部的意见，因此注重优化原则很

重要。一个有用的技巧是：当难以“一步到位”地做出数据分布策略的正确选择，以及

还存在质疑时，应从“对吗”、“好吗”两方面进行对比、评估、优化。

关于铃声下载门户的数据存储方案，张、王、李、赵 4 人分别提出了 4 种方案：分区、复制、

子集、集中。他们各不相让，几乎要吵起来了……

解决分歧、优化设计的办法是从“对吗”、“好吗”两方面进行对比评估。思维过程如表 15-2

所示：

 分区。在功能支持方面，没有任何问题。但是在非功能方面不好，例如没有解决性能

的问题。

 复制。在功能支持方面依然没有任何问题。但是太贵，大量并不流行，甚至无人感兴

趣的铃声被多次复制是毫无意义的。

 子集。在非功能方面有着独有的优势，将部分流行的铃声在多点进行复制存储既促进

了性能，又没有增加过多成本。但子集方式必然是一种辅助方式，因为它需要和另一

种支持所有铃声保存的策略一起使用。

 集中。用它和子集策略“搭配”，最为合适。

15.3 数据分布策略的 3条应用原则 163

 一线架构师实践指南

表 15-2 从“对吗”、“好吗”两方面进行对比评估，利于找到优化的方案

 提出者
对 吗 ？

（功能方面）

好 吗 ？

（非功能方面）
备 注

分区 小张 100 30 略显盲目

复制 老王 100 20 优点：性能高。缺点：

浪费惊人

子集 小李 30 90 二八原则，热门铃声性

能高

集中 小赵 100 50 比铃声分区式分布存储

简单

如此一来，总体的数据分布策略方案呈现出来：集中策略 + 子集策略。图 15-12 所示的架

构图说明了这一点。

图 15-12 铃声下载门户的数据分布策略

