

前⾔言
Hello, world of design ！你好，设计模式的世界！

欢迎来到这⾥里里，很⾼高兴你能拿到这本书，如果你能坚持看完并按照书中的例例⼦子进⾏行行实践，那么在编程开
发的世界⾥里里，就⼜又多了了⼀一个可以写出良好代码的⼈人，同时也为架构师培养储备了了⼀一个⼈人才。

可能在此之前你也多少了了解过设计模式，但在实际的业务开发中使⽤用却不不多，多数时候都是⼤大⾯面积堆积
ifelse组装业务流程，对于⼀一次次的需求迭代和逻辑补充，只能东拼⻄西凑 Ctrl+C、 Ctrl+V。

所以为了了能让更更多的程序员

!

更更好的接受设计思想和架构思维，并能运⽤用到实际的业务场景。本书的作
者⼩小傅哥，投⼊入50天时间，从互联⽹网实际业务开发中抽离出，交易易、营销、秒杀、中间件、源码等22
个真实场景，来学习设计模式实践使⽤用的应⽤用可上⼿手技能。

谁发明了了设计模式？

设计模式的概念最早是由 克⾥里里斯托佛·亚历⼭山⼤大 在其著作 《建筑模式语⾔言》 中⾸首次提出的。 本书介绍
了了城市设计的 “语⾔言”，提供了了253个描述城镇、邻⾥里里、住宅、花园、房间及⻄西部构造的模式， ⽽而此类
“语⾔言” 的基本单元就是模式。后来，埃⾥里里希·伽玛、 约翰·弗利利赛德斯、 拉尔夫·约翰逊 和 理理查德·赫尔
姆 这四位作者接受了了模式的概念。 1994 年年， 他们出版了了 《设计模式： 可复⽤用⾯面向对象软件的基础》
⼀一书， 将设计模式的概念应⽤用到程序开发领域中。

其实有⼀一部分⼈人并没有仔细阅读过设计模式的相关书籍和资料料，但依旧可以编写出优秀的代码。这主要
是由于在经过众多项⽬目的锤炼和对程序设计的不不断追求，从⽽而在多年年编程历程上提炼出来的⼼心得体会。
⽽而这份经验最终会与设计模式提到的内容⼏几乎⼀一致，同样会要求⾼高内聚、低耦合、可扩展、可复⽤用。你
可能也遇到类似的经历，在学习⼀一些框架的源码时，发现它⾥里里的某些设计和你在做开发时⼀一样。

我怎么学不不会设计模式？

钱也花了了，书也买了了。代码还是⼀一坨⼀一坨的！设计模式是由多年年的经验提炼出来开发指导思想。就像我
告诉你⾃自⾏行行⻋车怎么骑、汽⻋车怎么开，但只要你没跑过⼏几千公⾥里里，你能记住的只是理理论，想上道依旧很
慌！

所以，本设计模式专题系列列开始，会带着你使⽤用设计模式的思想去优化代码。从⽽而学习设计模式的⼼心得
并融⼊入给⾃自⼰己。当然这⾥里里还需要多加练习，⼀一定是⼈人⻋车合⼀一，才能站在设计模式的基础上构建出更更加合
理理的代码。

阅读建议

本书属于实战型⽽而不不是理理论介绍类书籍，每⼀一章节都有对应的完整代码，学习的过程需要参考书中的章
节与代码⼀一起学习，同时在学习的过程中需要了了解并运⾏行行代码。学习完成后进⾏行行知识点的总结，以及思
考

"

这样的设计模式在⾃自⼰己的业务场景中需要如何使⽤用。

参考资料料

本书在编写的过程中参考了了⾮非常优秀的理理论资料料，读者在学习的过程中也可以互相参考借鉴；

1. REFACTORING.GURU - https://refactoringguru.cn - 这是⼀一本图⽂文设计模式资料料，⾥里里⾯面的图稿⾮非
常助于理理解设计模式，作者在编写此书的同时也有相应的图⽚片引⽤用。

2. 菜⻦鸟设计模式 - RUNOOB.COM - 菜⻦鸟设计模式属于⽐比较简单的资料料内容，⽐比较适合还没有接触过
设计模式研发⼈人员。作者在编写此书的时候会进⾏行行⽐比对，避免内容编写的不不可观。

https://refactoringguru.cn/
https://www.runoob.com/design-pattern/design-pattern-tutorial.html

作者
作者⼩小傅哥，13年年毕业于软件⼯工程专业。⼀一线互联⽹网码农，主导过中⼤大型项⽬目建设、参与过⼤大促备战、
开发过中间件、写过技术专利利，热衷于编码狂热于对技术的探索，内⼼心世界丰富，时⽽而犯⼆二。

从19年年开始萌⽣生编写技术资料料想法，以沉淀、分享、成⻓长为核⼼心，让⾃自⼰己和他⼈人都能有所收获的想法，
截⽌止到当前已编写的内容包括；《⽤用Java实现JVM》、《Netty4.x专题》、《中间件开发》、《领域驱
动设计》、《全链路路监控》、《字节码编程》等9个专题共计150篇左右原创内容。

本书《重学 Java 设计模式》于5⽉月20⽇日启动，到7⽉月9⽇日正式编写完成，整理理成PDF供⼤大家参考学习，也
感谢⼀一路路来⼩小伙伴们对我的⽀支持。也希望读者能把这本资料料分享给更更多需要的⼈人，再次感谢！

我的技术站

##

1. 公众号：bugstack⾍虫洞洞栈 - ⽇日常原创技术推⽂文
2. 博客：http://bugstack.cn/ - 原创技术⽂文章汇总，适合电脑(PC)端阅读
3. Github：https://github.com/fuzhengwei/CodeGuide/wiki - 所有⽂文章涉及的源码汇总以及各类
资料料

4. 技术圈⼦子：微信圈⼦子⾥里里搜索，⾍虫洞洞技术栈 - 适合⽇日常技术发帖；资料料、发问、编程、解答、插件等

与我联系

如果你在学习和成⻓长的过程中遇到什什么问题，也可以添加我的微信(fustack)进⾏行行交流，⼗十分期待与同好
交流技术，互相学习。

设计模式专栏群

本群的宗旨是给⼤大家提供⼀一个良好的专项的技术学习交流平台，杜绝⼀一切⼴广告！如果微信群⼈人满
100 之后⽆无法加⼊入或者⼆二维码过期，请添加作者 “⼩小傅哥” 微信(fustack)，备注：设计模式加群。

http://bugstack.cn/
https://github.com/fuzhengwei/CodeGuide/wiki

源码
《重学 Java 设计模式》是以互联⽹网真实场景实践开发为基础，每⼀一章节的学习都会涉及到1-3个对应
的案例例⼯工程，这在每⼀一章节中都有所提到，在学习的过程中可以参考对照即可。

获取源码

1. 添加作者微信获取： fustack，备注获取设计模式源码

2. 微信搜索公众号： bugstack⾍虫洞洞栈，关注后回复源码下载，你会获得⼀一个连接， ID：18的即使

对应设计模式代码

源码截图

⽬目录
设计模式遵循六⼤大原则；单⼀一职责(⼀一个类和⽅方法只做⼀一件事)、⾥里里⽒氏替换(多态，⼦子类可扩展⽗父类)、依赖
倒置(细节依赖抽象，下层依赖上层)、接⼝口隔离(建⽴立单⼀一接⼝口)、迪⽶米特原则(最少知道，降低耦合)、开闭
原则(抽象架构，扩展实现)，会在具体的设计模式章节中，进⾏行行体现。

1. 创建型模式

这类模式提供创建对象的机制， 能够提升已有代码的灵活性和可复⽤用性。

序
号

类
型

图稿 业务场景 实现要点

1

⼯工
⼚厂
⽅方
法

多种类型商品不不同
接⼝口，统⼀一发奖服
务搭建场景

定义⼀一个创建对象的接⼝口，让其⼦子类⾃自
⼰己决定实例例化哪⼀一个⼯工⼚厂类，⼯工⼚厂模式
使其创建过程延迟到⼦子类进⾏行行。

2

抽
象
⼯工
⼚厂

替换Redis双集群
升级，代理理类抽象
场景

提供⼀一个创建⼀一系列列相关或相互依赖对
象的接⼝口，⽽而⽆无需指定它们具体的类。

3
建
造
者

各项装修物料料组合
套餐选配场景

将⼀一个复杂的构建与其表示相分离，使
得同样的构建过程可以创建不不同的表
示。

4
原
型

上机考试多套试，
每⼈人题⽬目和答案乱
序排列列场景

⽤用原型实例例指定创建对象的种类，并且
通过拷⻉贝这些原型创建新的对象。

5
单
例例

7种单例例模式案
例例，Effective Java
作者推荐枚举单例例
模式

保证⼀一个类仅有⼀一个实例例，并提供⼀一个
访问它的全局访问点。

2. 结构型模式

这类模式介绍如何将对象和类组装成较⼤大的结构， 并同时保持结构的灵活和⾼高效。

序
号

类
型

图稿 业务场景 实现要点

1
适
配
器器

从多个MQ消息体中，
抽取指定字段值场景

将⼀一个类的接⼝口转换成客户希望的另外
⼀一个接⼝口。适配器器模式使得原本由于接
⼝口不不兼容⽽而不不能⼀一起⼯工作的那些类可以
⼀一起⼯工作。

2
桥
接

多⽀支付渠道(微信、⽀支
付宝)与多⽀支付模式(刷
脸、指纹)场景

将抽象部分与实现部分分离，使它们都
可以独⽴立的变化。

3
组
合

营销差异化⼈人群发券，
决策树引擎搭建场景

将对象组合成树形结构以表示"部分-整
体"的层次结构。组合模式使得⽤用户对
单个对象和组合对象的使⽤用具有⼀一致
性。

4
装
饰

SSO单点登录功能扩
展，增加拦截⽤用户访问
⽅方法范围场景

动态地给⼀一个对象添加⼀一些额外的职
责。就增加功能来说，装饰器器模式相⽐比
⽣生成⼦子类更更为灵活。

5
外
观

基于SpringBoot开发
⻔门⾯面模式中间件，统⼀一
控制接⼝口⽩白名单场景

为⼦子系统中的⼀一组接⼝口提供⼀一个⼀一致的
界⾯面，外观模式定义了了⼀一个⾼高层接⼝口，
这个接⼝口使得这⼀一⼦子系统更更加容易易使
⽤用。

6
享
元

基于Redis秒杀，提供
活动与库存信息查询场
景

运⽤用共享技术有效地⽀支持⼤大量量细粒度的
对象。

7
代
理理

模拟mybatis-spring中
定义DAO接⼝口，使⽤用代
理理类⽅方式操作数据库原
理理实现场景

为其他对象提供⼀一种代理理以控制对这个
对象的访问。

序
号

类
型

图稿 业务场景 实现要点

1
责
任
链

模拟618电商⼤大促
期间，项⽬目上线流
程多级负责⼈人审批
场景

避免请求发送者与接收者耦合在⼀一起，让多
个对象都有可能接收请求，将这些对象连接
成⼀一条链，并且沿着这条链传递请求，直到
有对象处理理它为⽌止。

命 模拟⾼高档餐厅⼋八⼤大 将⼀一个请求封装成⼀一个对象，从⽽而使您可以

3. ⾏行行为模式

这类模式负责对象间的⾼高效沟通和职责委派。

2 令 菜系，⼩小⼆二点单厨
师烹饪场景

⽤用不不同的请求对客户进⾏行行参数化。

3
迭
代
器器

模拟公司组织架构
树结构关系，深度
迭代遍历⼈人员信息
输出场景

提供⼀一种⽅方法顺序访问⼀一个聚合对象中各个
元素, ⽽而⼜又⽆无须暴暴露露该对象的内部表示。

4
中
介
者

按照Mybatis原理理
⼿手写ORM框架，给
JDBC⽅方式操作数据
库增加中介者场景

⽤用⼀一个中介对象来封装⼀一系列列的对象交互，
中介者使各对象不不需要显式地相互引⽤用，从
⽽而使其耦合松散，⽽而且可以独⽴立地改变它们
之间的交互。

5
备
忘
录

模拟互联⽹网系统上
线过程中，配置⽂文
件回滚场景

在不不破坏封装性的前提下，捕获⼀一个对象的
内部状态，并在该对象之外保存这个状态。

6
观
察
者

模拟类似⼩小客⻋车指
标摇号过程，监听
消息通知⽤用户中签
场景

定义对象间的⼀一种⼀一对多的依赖关系，当⼀一
个对象的状态发⽣生改变时，所有依赖于它的
对象都得到通知并被⾃自动更更新。

7
状
态

模拟系统营销活
动，状态流程审核
发布上线场景

允许对象在内部状态发⽣生改变时改变它的⾏行行
为，对象看起来好像修改了了它的类。

8
策
略略

模拟多种营销类型
优惠券，折扣⾦金金额
计算策略略场景

定义⼀一系列列的算法,把它们⼀一个个封装起来,
并且使它们可相互替换。

9

模
板
⽅方
法

模拟爬⾍虫各类电商
商品，⽣生成营销推
⼴广海海报场景

定义⼀一个操作中的算法的⻣骨架，⽽而将⼀一些步
骤延迟到⼦子类中。模板⽅方法使得⼦子类可以不不
改变⼀一个算法的结构即可重定义该算法的某
些特定步骤。

10
访
问
者

模拟家⻓长与校⻓长，
对学⽣生和⽼老老师的不不
同视⻆角信息的访问
场景

主要将数据结构与数据操作分离。

以上图稿和部分描述参考https://refactoringguru.cn、https://www.runoob.com/design-pattern/visitor-p
attern.html

创建者模式(5节)

https://refactoringguru.cn/
https://www.runoob.com/design-pattern/visitor-pattern.html

创建者模式(5节)
这类模式提供创建对象的机制， 能够提升已有代码的灵活性和可复⽤用性。

创建者模式包括：⼯工⼚厂⽅方法、抽象⼯工⼚厂、⽣生成器器、原型、单例例，这5类。

第 1 节：⼯工⼚厂⽅方法模式

第 1 节：⼯工⼚厂⽅方法模式

好看的代码千篇⼀一律律，恶⼼心的程序升职加薪。

该说不不说⼏几乎是程序员就都知道或者了了解设计模式，但⼤大部分⼩小伙伴写代码总是习惯于⼀一把梭。⽆无论多
少业务逻辑就⼀一个类⼏几千⾏行行，这样的开发也可以归纳为三步；定义属性、创建⽅方法、调⽤用展示，
Done！只不不过开发⼀一时爽，重构⽕火葬场。

好的代码不不只为了了完成现有功能，也会考虑后续扩展。在结构设计上松耦合易易读易易扩展，在领域实现上
⾼高内聚不不对外暴暴漏漏实现细节不不被外部⼲干扰。⽽而这就有点像家⾥里里三居(MVC)室、四居(DDD)室的装修，你
不不会允许⼏几⼗十万的房⼦子把⾛走线⽔水管裸漏漏在外⾯面，也不不会允许把⻢马桶放到厨房，炉灶安装到卫⽣生间。

谁发明了了设计模式？ 设计模式的概念最早是由 克⾥里里斯托佛·亚历⼭山⼤大 在其著作 《建筑模式语⾔言》 中⾸首
次提出的。 本书介绍了了城市设计的 “语⾔言”，提供了了253个描述城镇、邻⾥里里、住宅、花园、房间及⻄西部构
造的模式， ⽽而此类 “语⾔言” 的基本单元就是模式。后来，埃⾥里里希·伽玛、 约翰·弗利利赛德斯、 拉尔夫·约
翰逊 和 理理查德·赫尔姆 这四位作者接受了了模式的概念。 1994 年年， 他们出版了了 《设计模式： 可复⽤用⾯面
向对象软件的基础》 ⼀一书， 将设计模式的概念应⽤用到程序开发领域中。

其实有⼀一部分⼈人并没有仔细阅读过设计模式的相关书籍和资料料，但依旧可以编写出优秀的代码。这主要
是由于在经过众多项⽬目的锤炼和对程序设计的不不断追求，从⽽而在多年年编程历程上提炼出来的⼼心得体会。
⽽而这份经验最终会与设计模式提到的内容⼏几乎⼀一致，同样会要求⾼高内聚、低耦合、可扩展、可复⽤用。你
可能也遇到类似的经历，在学习⼀一些框架的源码时，发现它⾥里里的某些设计和你在做开发时⼀一样。

我怎么学不不会设计模式？ 钱也花了了，书也买了了。代码还是⼀一坨⼀一坨的！设计模式是由多年年的经验提炼出
来开发指导思想。就像我告诉你⾃自⾏行行⻋车怎么骑、汽⻋车怎么开，但只要你没跑过⼏几千公⾥里里，你能记住的只
是理理论，想上道依旧很慌！

所以，本设计模式专题系列列开始，会带着你使⽤用设计模式的思想去优化代码。从⽽而学习设计模式的⼼心得
并融⼊入给⾃自⼰己。当然这⾥里里还需要多加练习，⼀一定是⼈人⻋车合⼀一，才能站在设计模式的基础上构建出更更加合
理理的代码。

⼀一、开发环境

1. JDK 1.8

2. Idea + Maven

⼯工程 描述

itstack-demo-design-1-00 场景模拟⼯工程，⽤用于提供三组不不同奖品的发放接⼝口

itstack-demo-design-1-01 使⽤用⼀一坨代码实现业务需求，也是对ifelse的使⽤用

itstack-demo-design-1-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取。你会获得⼀一个连接
打开后的列列表中编号 18： itstack-demo-design

1-00，1 代表着第⼀一个设计模式，⼯工⼚厂⽅方法模式
1-00，00 代表模拟的场景

1-01，01 代表第⼀一种实现⽅方案，后续 02 03 以此类推

⼆二、⼯工⼚厂⽅方法模式介绍

⼯工⼚厂⽅方法模式，图⽚片来⾃自 refactoringguru.cn

⼯工⼚厂模式⼜又称⼯工⼚厂⽅方法模式，是⼀一种创建型设计模式，其在⽗父类中提供⼀一个创建对象的⽅方法， 允许⼦子类
决定实例例化对象的类型。

这种设计模式也是 Java 开发中最常⻅见的⼀一种模式，它的主要意图是定义⼀一个创建对象的接⼝口，让其⼦子
类⾃自⼰己决定实例例化哪⼀一个⼯工⼚厂类，⼯工⼚厂模式使其创建过程延迟到⼦子类进⾏行行。

简单说就是为了了提供代码结构的扩展性，屏蔽每⼀一个功能类中的具体实现逻辑。让外部可以更更加简单的
只是知道调⽤用即可，同时，这也是去掉众多 ifelse的⽅方式。当然这可能也有⼀一些缺点，⽐比如需要实现

的类⾮非常多，如何去维护，怎样减低开发成本。但这些问题都可以在后续的设计模式结合使⽤用中，逐步
降低。

三、模拟发奖多种商品

序
号

类型 接⼝口

1 优惠券
CouponResult sendCoupon(String uId, String

couponNumber, String uuid)

2 实物商品 Boolean deliverGoods(DeliverReq req)

3
第三⽅方爱奇艺
兑换卡

void grantToken(String bindMobileNumber, String cardId)

为了了可以让整个学习的案例例更更加贴近实际开发，这⾥里里模拟互联⽹网中在营销场景下的业务。由于营销场景
的复杂、多变、临时的特性，它所需要的设计需要更更加深⼊入，否则会经常⾯面临各种紧急CRUD操作，从
⽽而让代码结构混乱不不堪，难以维护。

在营销场景中经常会有某个⽤用户做了了⼀一些操作；打卡、分享、留留⾔言、邀请注册等等，进⾏行行返利利积分，最
后通过积分在兑换商品，从⽽而促活和拉新。

那么在这⾥里里我们模拟积分兑换中的发放多种类型商品，假如现在我们有如下三种类型的商品接⼝口；

从以上接⼝口来看有如下信息：

三个接⼝口返回类型不不同，有对象类型、布尔类型、还有⼀一个空类型。
⼊入参不不同，发放优惠券需要仿重、兑换卡需要卡ID、实物商品需要发货位置(对象中含有)。
另外可能会随着后续的业务的发展，会新增其他种商品类型。因为你所有的开发需求都是随着业务
对市场的拓拓展⽽而带来的。

四、⽤用⼀一坨坨代码实现

如果不不考虑任何扩展性，只为了了尽快满⾜足需求，那么对这么⼏几种奖励发放只需使⽤用ifelse语句句判断，调
⽤用不不同的接⼝口即可满⾜足需求。可能这也是⼀一些刚⼊入⻔门编程的⼩小伙伴，常⽤用的⽅方式。接下来我们就先按照
这样的⽅方式来实现业务的需求。

1. ⼯工程结构

⼯工程结构上⾮非常简单，⼀一个⼊入参对象 AwardReq 、⼀一个出参对象 AwardRes，以及⼀一个接⼝口类
PrizeController

2. ifelse实现需求

itstack-demo-design-1-01

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" AwardReq.java
 $ #"" AwardRes.java
 $!"" PrizeController.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

public class PrizeController {

 private Logger logger =

LoggerFactory.getLogger(PrizeController.class);

 public AwardRes awardToUser(AwardReq req) {

 String reqJson = JSON.toJSONString(req);

 AwardRes awardRes = null;

 try {

 logger.info("奖品发放开始{}。req:{}", req.getuId(), reqJson);

 // 按照不不同类型⽅方法商品[1优惠券、2实物商品、3第三⽅方兑换卡(爱奇艺)]

 if (req.getAwardType() == 1) {

 CouponService couponService = new CouponService();

 CouponResult couponResult =

couponService.sendCoupon(req.getuId(), req.getAwardNumber(),

req.getBizId());

 if ("0000".equals(couponResult.getCode())) {

 awardRes = new AwardRes("0000", "发放成功");

 } else {

 awardRes = new AwardRes("0001",

couponResult.getInfo());

 }

 } else if (req.getAwardType() == 2) {

 GoodsService goodsService = new GoodsService();

 DeliverReq deliverReq = new DeliverReq();

 deliverReq.setUserName(queryUserName(req.getuId()));

 deliverReq.setUserPhone(queryUserPhoneNumber(req.getuId()));

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

如上就是使⽤用 ifelse ⾮非常直接的实现出来业务需求的⼀一坨代码，如果仅从业务⻆角度看，研发如
期甚⾄至提前实现了了功能。
那这样的代码⽬目前来看并不不会有什什么问题，但如果在经过⼏几次的迭代和拓拓展，接⼿手这段代码的研发

 deliverReq.setSku(req.getAwardNumber());

 deliverReq.setOrderId(req.getBizId());

 deliverReq.setConsigneeUserName(req.getExtMap().get("consigneeUserName"))

;

 deliverReq.setConsigneeUserPhone(req.getExtMap().get("consigneeUserPhone"

));

 deliverReq.setConsigneeUserAddress(req.getExtMap().get("consigneeUserAddr

ess"));

 Boolean isSuccess = goodsService.deliverGoods(deliverReq);

 if (isSuccess) {

 awardRes = new AwardRes("0000", "发放成功");

 } else {

 awardRes = new AwardRes("0001", "发放失败");

 }

 } else if (req.getAwardType() == 3) {

 String bindMobileNumber =

queryUserPhoneNumber(req.getuId());

 IQiYiCardService iQiYiCardService = new

IQiYiCardService();

 iQiYiCardService.grantToken(bindMobileNumber,

req.getAwardNumber());

 awardRes = new AwardRes("0000", "发放成功");

 }

 logger.info("奖品发放完成{}。", req.getuId());

 } catch (Exception e) {

 logger.error("奖品发放失败{}。req:{}", req.getuId(), reqJson,

e);

 awardRes = new AwardRes("0001", e.getMessage());

 }

 return awardRes;

 }

 private String queryUserName(String uId) {

 return "花花";

 }

 private String queryUserPhoneNumber(String uId) {

 return "15200101232";

 }

}

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

将⼗十分痛苦。重构成本⾼高需要理理清之前每⼀一个接⼝口的使⽤用，测试回归验证时间⻓长，需要全部验证⼀一
次。这也就是很多⼈人并不不愿意接⼿手别⼈人的代码，如果接⼿手了了⼜又被压榨开发时间。那么可想⽽而知这样
的 ifelse 还会继续增加。

3. 测试验证

写⼀一个单元测试来验证上⾯面编写的接⼝口⽅方式，养成单元测试的好习惯会为你增强代码质量量。

编写测试类：

@Test

public void test_awardToUser() {

 PrizeController prizeController = new PrizeController();

 System.out.println("\r\n模拟发放优惠券测试\r\n");

 // 模拟发放优惠券测试

 AwardReq req01 = new AwardReq();

 req01.setuId("10001");

 req01.setAwardType(1);

 req01.setAwardNumber("EGM1023938910232121323432");

 req01.setBizId("791098764902132");

 AwardRes awardRes01 = prizeController.awardToUser(req01);

 logger.info("请求参数：{}", JSON.toJSON(req01));

 logger.info("测试结果：{}", JSON.toJSON(awardRes01));

 System.out.println("\r\n模拟⽅方法实物商品\r\n");

 // 模拟⽅方法实物商品

 AwardReq req02 = new AwardReq();

 req02.setuId("10001");

 req02.setAwardType(2);

 req02.setAwardNumber("9820198721311");

 req02.setBizId("1023000020112221113");

 Map<String,String> extMap = new HashMap<String,String>();

 extMap.put("consigneeUserName", "谢⻜飞机");

 extMap.put("consigneeUserPhone", "15200292123");

 extMap.put("consigneeUserAddress", "吉林林省.⻓长春市.双阳区.XX街道.檀溪苑⼩小

区.#18-2109");

 req02.setExtMap(extMap);

 commodityService_2.sendCommodity("10001","9820198721311","102300002011222

1113", extMap);

 AwardRes awardRes02 = prizeController.awardToUser(req02);

 logger.info("请求参数：{}", JSON.toJSON(req02));

 logger.info("测试结果：{}", JSON.toJSON(awardRes02));

 System.out.println("\r\n第三⽅方兑换卡(爱奇艺)\r\n");

 AwardReq req03 = new AwardReq();

 req03.setuId("10001");

 req03.setAwardType(3);

 req03.setAwardNumber("AQY1xjkUodl8LO975GdfrYUio");

 AwardRes awardRes03 = prizeController.awardToUser(req03);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

结果：

 logger.info("请求参数：{}", JSON.toJSON(req03));

 logger.info("测试结果：{}", JSON.toJSON(awardRes03));

}

38

39

40

模拟发放优惠券测试

22:17:55.668 [main] INFO o.i.demo.design.PrizeController - 奖品发放开始

10001。req:

{"awardNumber":"EGM1023938910232121323432","awardType":1,"bizId":"79109876

4902132","uId":"10001"}

模拟发放优惠券⼀一张：10001,EGM1023938910232121323432,791098764902132

22:17:55.671 [main] INFO o.i.demo.design.PrizeController - 奖品发放完成

10001。

22:17:55.673 [main] INFO org.itstack.demo.test.ApiTest - 请求参

数：{"uId":"10001","bizId":"791098764902132","awardNumber":"EGM102393891023

2121323432","awardType":1}

22:17:55.674 [main] INFO org.itstack.demo.test.ApiTest - 测试结

果：{"code":"0000","info":"发放成功"}

模拟⽅方法实物商品

22:17:55.675 [main] INFO o.i.demo.design.PrizeController - 奖品发放开始

10001。req:

{"awardNumber":"9820198721311","awardType":2,"bizId":"1023000020112221113"

,"extMap":{"consigneeUserName":"谢⻜飞

机","consigneeUserPhone":"15200292123","consigneeUserAddress":"吉林林省.⻓长春

市.双阳区.XX街道.檀溪苑⼩小区.#18-2109"},"uId":"10001"}

模拟发货实物商品⼀一个：{"consigneeUserAddress":"吉林林省.⻓长春市.双阳区.XX街道.檀溪苑⼩小

区.#18-2109","consigneeUserName":"谢⻜飞

机","consigneeUserPhone":"15200292123","orderId":"1023000020112221113","sk

u":"9820198721311","userName":"花花","userPhone":"15200101232"}

22:17:55.677 [main] INFO o.i.demo.design.PrizeController - 奖品发放完成

10001。

22:17:55.677 [main] INFO org.itstack.demo.test.ApiTest - 请求参

数：{"extMap":{"consigneeUserName":"谢⻜飞机","consigneeUserAddress":"吉林林省.⻓长

春市.双阳区.XX街道.檀溪苑⼩小区.#18-

2109","consigneeUserPhone":"15200292123"},"uId":"10001","bizId":"102300002

0112221113","awardNumber":"9820198721311","awardType":2}

22:17:55.677 [main] INFO org.itstack.demo.test.ApiTest - 测试结

果：{"code":"0000","info":"发放成功"}

第三⽅方兑换卡(爱奇艺)

22:17:55.678 [main] INFO o.i.demo.design.PrizeController - 奖品发放开始

10001。req:

{"awardNumber":"AQY1xjkUodl8LO975GdfrYUio","awardType":3,"uId":"10001"}

模拟发放爱奇艺会员卡⼀一张：15200101232，AQY1xjkUodl8LO975GdfrYUio

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

运⾏行行结果正常，满⾜足当前所有业务产品需求，写的还很快。但！实在难以为维护！

五、⼯工⼚厂模式优化代码

接下来使⽤用⼯工⼚厂⽅方法模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。整理理重构会你会发现代码结构清晰
了了、也具备了了下次新增业务需求的扩展性。但在实际使⽤用中还会对此进⾏行行完善，⽬目前的只是抽离出最核
⼼心的部分体现到你⾯面前，⽅方便便学习。

1. ⼯工程结构

⾸首先，从上⾯面的⼯工程结构中你是否⼀一些感觉，⽐比如；它看上去清晰了了、这样分层可以更更好扩展了了、
似乎可以想象到每⼀一个类做了了什什么。
如果还不不能理理解为什什么这样修改，也没有关系。因为你是在通过这样的⽂文章，来学习设计模式的魅
⼒力力。并且再获取源码后，进⾏行行实际操作⼏几次也就慢慢掌握了了⼯工⼚厂模式的技巧。

2. 代码实现

2.1 定义发奖接⼝口

22:17:55.678 [main] INFO o.i.demo.design.PrizeController - 奖品发放完成

10001。

22:17:55.678 [main] INFO org.itstack.demo.test.ApiTest - 请求参

数：{"uId":"10001","awardNumber":"AQY1xjkUodl8LO975GdfrYUio","awardType":3}

22:17:55.678 [main] INFO org.itstack.demo.test.ApiTest - 测试结

果：{"code":"0000","info":"发放成功"}

Process finished with exit code 0

21

22

23

24

25

itstack-demo-design-1-02

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" store
 $ $ #"" impl
 $ $ $ #"" CardCommodityService.java
 $ $ $ #"" CouponCommodityService.java
 $ $ $!"" GoodsCommodityService.java
 $ $!"" ICommodity.java
 $!"" StoreFactory.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

所有的奖品⽆无论是实物、虚拟还是第三⽅方，都需要通过我们的程序实现此接⼝口进⾏行行处理理，以保证最
终⼊入参出参的统⼀一性。
接⼝口的⼊入参包括；⽤用户ID、奖品ID、业务ID以及扩展字段⽤用于处理理发放实物商品时的收获地

址。

2.2 实现奖品发放接⼝口

优惠券

实物商品

public interface ICommodity {

 void sendCommodity(String uId, String commodityId, String bizId,

Map<String, String> extMap) throws Exception;

}

1

2

3

4

5

public class CouponCommodityService implements ICommodity {

 private Logger logger =

LoggerFactory.getLogger(CouponCommodityService.class);

 private CouponService couponService = new CouponService();

 public void sendCommodity(String uId, String commodityId, String

bizId, Map<String, String> extMap) throws Exception {

 CouponResult couponResult = couponService.sendCoupon(uId,

commodityId, bizId);

 logger.info("请求参数[优惠券] => uId：{} commodityId：{} bizId：{}

extMap：{}", uId, commodityId, bizId, JSON.toJSON(extMap));

 logger.info("测试结果[优惠券]：{}", JSON.toJSON(couponResult));

 if (!"0000".equals(couponResult.getCode())) throw new

RuntimeException(couponResult.getInfo());

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public class GoodsCommodityService implements ICommodity {

 private Logger logger =

LoggerFactory.getLogger(GoodsCommodityService.class);

 private GoodsService goodsService = new GoodsService();

 public void sendCommodity(String uId, String commodityId, String

bizId, Map<String, String> extMap) throws Exception {

 DeliverReq deliverReq = new DeliverReq();

1

2

3

4

5

6

7

8

第三⽅方兑换卡

 deliverReq.setUserName(queryUserName(uId));

 deliverReq.setUserPhone(queryUserPhoneNumber(uId));

 deliverReq.setSku(commodityId);

 deliverReq.setOrderId(bizId);

 deliverReq.setConsigneeUserName(extMap.get("consigneeUserName"));

 deliverReq.setConsigneeUserPhone(extMap.get("consigneeUserPhone"));

 deliverReq.setConsigneeUserAddress(extMap.get("consigneeUserAddress"));

 Boolean isSuccess = goodsService.deliverGoods(deliverReq);

 logger.info("请求参数[优惠券] => uId：{} commodityId：{} bizId：{}

extMap：{}", uId, commodityId, bizId, JSON.toJSON(extMap));

 logger.info("测试结果[优惠券]：{}", isSuccess);

 if (!isSuccess) throw new RuntimeException("实物商品发放失败");

 }

 private String queryUserName(String uId) {

 return "花花";

 }

 private String queryUserPhoneNumber(String uId) {

 return "15200101232";

 }

}

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

public class CardCommodityService implements ICommodity {

 private Logger logger =

LoggerFactory.getLogger(CardCommodityService.class);

 // 模拟注⼊入

 private IQiYiCardService iQiYiCardService = new IQiYiCardService();

 public void sendCommodity(String uId, String commodityId, String

bizId, Map<String, String> extMap) throws Exception {

 String mobile = queryUserMobile(uId);

 iQiYiCardService.grantToken(mobile, bizId);

 logger.info("请求参数[爱奇艺兑换卡] => uId：{} commodityId：{} bizId：

{} extMap：{}", uId, commodityId, bizId, JSON.toJSON(extMap));

 logger.info("测试结果[爱奇艺兑换卡]：success");

 }

 private String queryUserMobile(String uId) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

从上⾯面可以看到每⼀一种奖品的实现都包括在⾃自⼰己的类中，新增、修改或者删除都不不会影响其他奖品
功能的测试，降低回归测试的可能。
后续在新增的奖品只需要按照此结构进⾏行行填充即可，⾮非常易易于维护和扩展。
在统⼀一了了⼊入参以及出参后，调⽤用⽅方不不在需要关⼼心奖品发放的内部逻辑，按照统⼀一的⽅方式即可处理理。

2.3 创建商店⼯工⼚厂

这⾥里里我们定义了了⼀一个商店的⼯工⼚厂类，在⾥里里⾯面按照类型实现各种商品的服务。可以⾮非常⼲干净整洁的处
理理你的代码，后续新增的商品在这⾥里里扩展即可。如果你不不喜欢 if判断，也可以使⽤用 switch或

者 map配置结构，会让代码更更加⼲干净。

另外很多代码检查软件和编码要求，不不喜欢if语句句后⾯面不不写扩展，这⾥里里是为了了更更加⼲干净的向你体现
逻辑。在实际的业务编码中可以添加括号。

3. 测试验证

编写测试类：

 return "15200101232";

 }

}

16

17

18

19

public class StoreFactory {

 public ICommodity getCommodityService(Integer commodityType) {

 if (null == commodityType) return null;

 if (1 == commodityType) return new CouponCommodityService();

 if (2 == commodityType) return new GoodsCommodityService();

 if (3 == commodityType) return new CardCommodityService();

 throw new RuntimeException("不不存在的商品服务类型");

 }

}

1

2

3

4

5

6

7

8

9

10

11

@Test

public void test_commodity() throws Exception {

 StoreFactory storeFactory = new StoreFactory();

 // 1. 优惠券

 ICommodity commodityService_1 = storeFactory.getCommodityService(1);

 commodityService_1.sendCommodity("10001", "EGM1023938910232121323432",

"791098764902132", null);

 // 2. 实物商品

 ICommodity commodityService_2 = storeFactory.getCommodityService(2);

 Map<String,String> extMap = new HashMap<String,String>();

 extMap.put("consigneeUserName", "谢⻜飞机");

 extMap.put("consigneeUserPhone", "15200292123");

 extMap.put("consigneeUserAddress", "吉林林省.⻓长春市.双阳区.XX街道.檀溪苑⼩小

区.#18-2109");

1

2

3

4

5

6

7

8

9

10

11

12

13

结果：

运⾏行行结果正常，既满⾜足了了业务产品需求，也满⾜足了了⾃自⼰己对代码的追求。这样的代码部署上线运⾏行行，
内⼼心不不会恐慌，不不会觉得半夜会有电话。
另外从运⾏行行测试结果上也可以看出来，在进⾏行行封装后可以⾮非常清晰的看到⼀一整套发放奖品服务的完
整性，统⼀一了了⼊入参、统⼀一了了结果。

六、总结

从上到下的优化来看，⼯工⼚厂⽅方法模式并不不复杂，甚⾄至这样的开发结构在你有所理理解后，会发现更更加
简单了了。
那么这样的开发的好处知道后，也可以总结出来它的优点；避免创建者与具体的产品逻辑耦合、满

 commodityService_2.sendCommodity("10001","9820198721311","102300002011222

1113", extMap);

 // 3. 第三⽅方兑换卡(爱奇艺)

 ICommodity commodityService_3 = storeFactory.getCommodityService(3);

 commodityService_3.sendCommodity("10001","AQY1xjkUodl8LO975GdfrYUio",null

,null);

}

14

15

16

17

18

19

模拟发放优惠券⼀一张：10001,EGM1023938910232121323432,791098764902132

22:48:10.922 [main] INFO o.i.d.d.s.i.CouponCommodityService - 请求参数[优惠

券] => uId：10001 commodityId：EGM1023938910232121323432 bizId：

791098764902132 extMap：null

22:48:10.957 [main] INFO o.i.d.d.s.i.CouponCommodityService - 测试结果[优惠

券]：{"code":"0000","info":"发放成功"}

模拟发货实物商品⼀一个：{"consigneeUserAddress":"吉林林省.⻓长春市.双阳区.XX街道.檀溪苑⼩小

区.#18-2109","consigneeUserName":"谢⻜飞

机","consigneeUserPhone":"15200292123","orderId":"1023000020112221113","sk

u":"9820198721311","userName":"花花","userPhone":"15200101232"}

22:48:10.962 [main] INFO o.i.d.d.s.impl.GoodsCommodityService - 请求参数[优

惠券] => uId：10001 commodityId：9820198721311 bizId：1023000020112221113

extMap：{"consigneeUserName":"谢⻜飞机","consigneeUserAddress":"吉林林省.⻓长春市.双

阳区.XX街道.檀溪苑⼩小区.#18-2109","consigneeUserPhone":"15200292123"}

22:48:10.962 [main] INFO o.i.d.d.s.impl.GoodsCommodityService - 测试结果[优

惠券]：true

模拟发放爱奇艺会员卡⼀一张：15200101232，null

22:48:10.963 [main] INFO o.i.d.d.s.impl.CardCommodityService - 请求参数[爱

奇艺兑换卡] => uId：10001 commodityId：AQY1xjkUodl8LO975GdfrYUio bizId：null

extMap：null

22:48:10.963 [main] INFO o.i.d.d.s.impl.CardCommodityService - 测试结果[爱

奇艺兑换卡]：success

Process finished with exit code 0

1

2

3

4

5

6

7

8

9

10

11

⾜足单⼀一职责，每⼀一个业务逻辑实现都在所属⾃自⼰己的类中完成、满⾜足开闭原则，⽆无需更更改使⽤用调⽤用⽅方就可以

在程序中引⼊入新的产品类型。但这样也会带来⼀一些问题，⽐比如有⾮非常多的奖品类型，那么实现的⼦子

类会极速扩张。因此也需要使⽤用其他的模式进⾏行行优化，这些在后续的设计模式中会逐步涉及到。
从案例例⼊入⼿手看设计模式往往要⽐比看理理论学的更更加容易易，因为案例例是缩短理理论到上⼿手的最佳⽅方式，如
果你已经有所收获，⼀一定要去尝试实操。

⼯工程 描述

itstack-demo-design-2-00 场景模拟⼯工程，模拟出使⽤用Redis升级为集群时类改造

itstack-demo-design-2-01 使⽤用⼀一坨代码实现业务需求，也是对ifelse的使⽤用

itstack-demo-design-2-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

第 2 节：抽象⼯工⼚厂模式

代码⼀一把梭，兄弟来背锅。

⼤大部分做开发的⼩小伙伴初⼼心都希望把代码写好，除了了把编程当作⼯工作以外他们还是具备⼯工匠精神的从业
者。但很多时候⼜又很难让你把初⼼心坚持下去，就像；接了了个烂⼿手的项⽬目、产品功能要的急、个⼈人能⼒力力不不
⾜足，等等原因导致⼯工程代码臃肿不不堪，线上频出事故，最终离职⾛走⼈人。

看了了很多书、学了了很多知识，多线程能玩出花，可最后我还是写不不好代码！

这就有点像家⾥里里装修完了了买物件，我⼏几⼗十万的实⽊木沙发，怎么放这⾥里里就不不好看。同样代码写的不不好并不不
⼀一定是基础技术不不⾜足，也不不⼀一定是产品要得急 怎么实现我不不管明天上线。⽽而很多时候是我们对编码的经
验的不不⾜足和对架构的把控能⼒力力不不到位，我相信产品的第⼀一个需求往往都不不复杂，甚⾄至所⻅见所得。但如果
你不不考虑后续的是否会拓拓展，将来会在哪些模块继续添加功能，那么后续的代码就会随着你种下的第⼀一
颗恶性的种⼦子开始蔓延。

学习设计模式的⼼心得有哪些，怎么学才会⽤用！

设计模式书籍，有点像考驾驶证的科⼀一、家⾥里里装修时的⼿手册、或者单身狗的恋爱宝典。但！你只要不不实
操，⼀一定能搞的乱码七糟。因为这些指导思想都是从实际经验中提炼的，没有经过提炼的⼩小⽩白，很难驾

驭这样的知识。所以在学习的过程中⾸首先要有案例例，之后再结合案例例与⾃自⼰己实际的业务，尝试重构改
造，慢慢体会其中的感受，从⽽而也就学会了了如果搭建出优秀的代码。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取

⼆二、抽象⼯工⼚厂模式介绍

https://bugstack.cn/assets/images/qrcode.png

抽象⼯工⼚厂模式与⼯工⼚厂⽅方法模式虽然主要意图都是为了了解决，接⼝口选择问题。但在实现上，抽象⼯工⼚厂是⼀一
个中⼼心⼯工⼚厂，创建其他⼯工⼚厂的模式。

可能在平常的业务开发中很少关注这样的设计模式或者类似的代码结构，但是这种场景确⼀一直在我们身
边，例例如；

1. 不不同系统内的回⻋车换⾏行行

1. Unix系统⾥里里，每⾏行行结尾只有 <换⾏行行>，即 \n；
2. Windows系统⾥里里⾯面，每⾏行行结尾是 <换⾏行行><回⻋车>，即 \n\r；
3. Mac系统⾥里里，每⾏行行结尾是 <回⻋车>

2. IDEA 开发⼯工具的差异展示(Win\Mac)

除了了这样显⽽而易易⻅见的例例⼦子外，我们的业务开发中时常也会遇到类似的问题，需要兼容做处理理。但⼤大部分
经验不不⾜足的开发⼈人员，常常直接通过添加 ifelse⽅方式进⾏行行处理理了了。

三、案例例场景模拟

很多时候初期业务的蛮荒发展，也会牵动着研发对系统的建设。

预估 QPS较低、系统压⼒力力较⼩小、并发访问不不⼤大、近⼀一年年没有⼤大动作等等，在考虑时间投⼊入成本的前提

前，并不不会投⼊入特别多的⼈人⼒力力去构建⾮非常完善的系统。就像对 Redis 的使⽤用，往往可能只要是单机的
就可以满⾜足现状。

不不吹⽜牛的讲百度⾸首⻚页我上学时候⼀一天就能写完，等毕业⼯工作了了就算给我⼀一年年都完成不不了了！

但随着业务超过预期的快速发展，系统的负载能⼒力力也要随着跟上。原有的单机 Redis 已经满⾜足不不了了系
统需求。这时候就需要更更换为更更为健壮的Redis集群服务，虽然需要修改但是不不能影响⽬目前系统的运
⾏行行，还要平滑过渡过去。

随着这次的升级，可以预⻅见的问题会有；

1. 很多服务⽤用到了了Redis需要⼀一起升级到集群。
2. 需要兼容集群A和集群B，便便于后续的灾备。
3. 两套集群提供的接⼝口和⽅方法各有差异，需要做适配。
4. 不不能影响到⽬目前正常运⾏行行的系统。

1. 场景模拟⼯工程

⼯工程中的所有代码可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载进⾏行行获取。

2. 场景简述

itstack-demo-design-2-00

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" matter
 $ #"" EGM.java
 $!"" IIR.java
 !"" RedisUtils.java

1

2

3

4

5

6

7

8

9

2.1 模拟单机服务 RedisUtils

模拟Redis功能，也就是假定⽬目前所有的系统都在使⽤用的服务
类和⽅方法名次都固定写死到各个业务系统中，改动略略微麻烦

2.2 模拟集群 EGM

模拟⼀一个集群服务，但是⽅方法名与各业务系统中使⽤用的⽅方法名不不同。有点像你mac，我⽤用win。做
⼀一样的事，但有不不同的操作。

2.3 模拟集群 IIR

这是另外⼀一套集群服务，有时候在企业开发中就很有可能出现两套服务，这⾥里里我们也是为了了做模拟
案例例，所以添加两套实现同样功能的不不同服务，来学习抽象⼯工⼚厂模式。

综上可以看到，我们⽬目前的系统中已经在⼤大量量的使⽤用redis服务，但是因为系统不不能满⾜足业务的快速发
展，因此需要迁移到集群服务中。⽽而这时有两套集群服务需要兼容使⽤用，⼜又要满⾜足所有的业务系统改造
的同时不不影响线上使⽤用。

3. 单集群代码使⽤用

以下是案例例模拟中原有的单集群Redis使⽤用⽅方式，后续会通过对这⾥里里的代码进⾏行行改造。

3.1 定义使⽤用接⼝口

3.2 实现调⽤用代码

public interface CacheService {

 String get(final String key);

 void set(String key, String value);

 void set(String key, String value, long timeout, TimeUnit timeUnit);

 void del(String key);

}

1

2

3

4

5

6

7

8

9

10

11

public class CacheServiceImpl implements CacheService {

 private RedisUtils redisUtils = new RedisUtils();

 public String get(String key) {

 return redisUtils.get(key);

 }

 public void set(String key, String value) {

 redisUtils.set(key, value);

 }

1

2

3

4

5

6

7

8

9

10

11

12

⽬目前的代码对于当前场景下的使⽤用没有什什么问题，也⽐比较简单。但是所有的业务系统都在使⽤用同
时，需要改造就不不那么容易易了了。这⾥里里可以思考下，看如何改造才是合理理的。

四、⽤用⼀一坨坨代码实现

讲道理理没有ifelse解决不不了了的逻辑，不不⾏行行就在加⼀一⾏行行！

此时的实现⽅方式并不不会修改类结构图，也就是与上⾯面给出的类层级关系⼀一致。通过在接⼝口中添加类型字
段区分当前使⽤用的是哪个集群，来作为使⽤用的判断。可以说⽬目前的⽅方式⾮非常难⽤用，其他使⽤用⽅方改动颇
多，这⾥里里只是做为例例⼦子。

1. ⼯工程结构

此时的只有两个类，类结构⾮非常简单。⽽而我们需要的补充扩展功能也只是在 CacheServiceImpl
中实现。

2. ifelse实现需求

 public void set(String key, String value, long timeout, TimeUnit

timeUnit) {

 redisUtils.set(key, value, timeout, timeUnit);

 }

 public void del(String key) {

 redisUtils.del(key);

 }

}

13

14

15

16

17

18

19

20

21

itstack-demo-design-2-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" impl
 $!"" CacheServiceImpl.java
 !"" CacheService.java

1

2

3

4

5

6

7

8

public class CacheServiceImpl implements CacheService {

 private RedisUtils redisUtils = new RedisUtils();

 private EGM egm = new EGM();

 private IIR iir = new IIR();

 public String get(String key, int redisType) {

 if (1 == redisType) {

1

2

3

4

5

6

7

8

9

10

11

这⾥里里的实现过程⾮非常简单，主要根据类型判断是哪个Redis集群。
虽然实现是简单了了，但是对使⽤用者来说就麻烦了了，并且也很难应对后期的拓拓展和不不停的维护。

3. 测试验证

接下来我们通过junit单元测试的⽅方式验证接⼝口服务，强调⽇日常编写好单测可以更更好的提⾼高系统的健壮
度。

编写测试类：

结果：

 return egm.gain(key);

 }

 if (2 == redisType) {

 return iir.get(key);

 }

 return redisUtils.get(key);

 }

 public void set(String key, String value, int redisType) {

 if (1 == redisType) {

 egm.set(key, value);

 return;

 }

 if (2 == redisType) {

 iir.set(key, value);

 return;

 }

 redisUtils.set(key, value);

 }

 //... 同类不不做太多展示，可以下载源码进⾏行行参考

}

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

@Test

public void test_CacheService() {

 CacheService cacheService = new CacheServiceImpl();

 cacheService.set("user_name_01", "⼩小傅哥", 1);

 String val01 = cacheService.get("user_name_01",1);

 System.out.println(val01);

}

1

2

3

4

5

6

7

从结果上看运⾏行行正常，并没有什什么问题。但这样的代码只要到⽣生成运⾏行行起来以后，想再改就真的难
了了！

五、抽象⼯工⼚厂模式重构代码

接下来使⽤用抽象⼯工⼚厂模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

这⾥里里的抽象⼯工⼚厂的创建和获取⽅方式，会采⽤用代理理类的⽅方式进⾏行行实现。所被代理理的类就是⽬目前的Redis操
作⽅方法类，让这个类在不不需要任何修改下，就可以实现调⽤用集群A和集群B的数据服务。

并且这⾥里里还有⼀一点⾮非常重要，由于集群A和集群B在部分⽅方法提供上是不不同的，因此需要做⼀一个接⼝口适
配，⽽而这个适配类就相当于⼯工⼚厂中的⼯工⼚厂，⽤用于创建把不不同的服务抽象为统⼀一的接⼝口做相同的业务。这
⼀一块与我们上⼀一章节中的⼯工⼚厂⽅方法模型类型，可以翻阅参考。

1. ⼯工程结构

抽象⼯工⼚厂模型结构

22:26:24.591 [main] INFO org.itstack.demo.design.matter.EGM - EGM写⼊入数据

key：user_name_01 val：⼩小傅哥

22:26:24.593 [main] INFO org.itstack.demo.design.matter.EGM - EGM获取数据

key：user_name_01

测试结果：⼩小傅哥

Process finished with exit code 0

1

2

3

4

5

itstack-demo-design-2-02

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" factory
 $ $ #"" impl
 $ $ $ #"" EGMCacheAdapter.java
 $ $ $!"" IIRCacheAdapter.java
 $ $ #"" ICacheAdapter.java
 $ $ #"" JDKInvocationHandler.java
 $ $!"" JDKProxy.java
 $ #"" impl
 $ $!"" CacheServiceImpl.java
 $!"" CacheService.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

⼯工程中涉及的部分核⼼心功能代码，如下；

ICacheAdapter，定义了了适配接⼝口，分别包装两个集群中差异化的接⼝口名

称。 EGMCacheAdapter、 IIRCacheAdapter

JDKProxy、 JDKInvocationHandler，是代理理类的定义和实现，这部分也就是抽象⼯工⼚厂的

另外⼀一种实现⽅方式。通过这样的⽅方式可以很好的把原有操作Redis的⽅方法进⾏行行代理理操作，通过
控制不不同的⼊入参对象，控制缓存的使⽤用。

好，那么接下来会分别讲解⼏几个类的具体实现。

2. 代码实现

2.1 定义适配接⼝口

这个类的主要作⽤用是让所有集群的提供⽅方，能在统⼀一的⽅方法名称下进⾏行行操作。也⽅方⾯面后续的拓拓展。

2.2 实现集群使⽤用服务

public interface ICacheAdapter {

 String get(String key);

 void set(String key, String value);

 void set(String key, String value, long timeout, TimeUnit timeUnit);

 void del(String key);

}

1

2

3

4

5

6

7

8

9

10

11

EGMCacheAdapter

IIRCacheAdapter

public class EGMCacheAdapter implements ICacheAdapter {

 private EGM egm = new EGM();

 public String get(String key) {

 return egm.gain(key);

 }

 public void set(String key, String value) {

 egm.set(key, value);

 }

 public void set(String key, String value, long timeout, TimeUnit

timeUnit) {

 egm.setEx(key, value, timeout, timeUnit);

 }

 public void del(String key) {

 egm.delete(key);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

public class IIRCacheAdapter implements ICacheAdapter {

 private IIR iir = new IIR();

 public String get(String key) {

 return iir.get(key);

 }

 public void set(String key, String value) {

 iir.set(key, value);

 }

 public void set(String key, String value, long timeout, TimeUnit

timeUnit) {

 iir.setExpire(key, value, timeout, timeUnit);

 }

 public void del(String key) {

 iir.del(key);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

以上两个实现都⾮非常容易易，在统⼀一⽅方法名下进⾏行行包装。

2.3 定义抽象⼯工程代理理类和实现

JDKProxy

这⾥里里主要的作⽤用就是完成代理理类，同时对于使⽤用哪个集群有外部通过⼊入参进⾏行行传递。

JDKInvocationHandler

在代理理类的实现中其实也⾮非常简单，通过穿透进来的集群服务进⾏行行⽅方法操作。
另外在 invoke中通过使⽤用获取⽅方法名称反射⽅方式，调⽤用对应的⽅方法功能，也就简化了了整体的使

⽤用。
到这我们就已经将整体的功能实现完成了了，关于抽象⼯工⼚厂这部分也可以使⽤用⾮非代理理的⽅方式进⾏行行实
现。

3. 测试验证

编写测试类：

public static <T> T getProxy(Class<T> interfaceClass, ICacheAdapter

cacheAdapter) throws Exception {

 InvocationHandler handler = new JDKInvocationHandler(cacheAdapter);

 ClassLoader classLoader =

Thread.currentThread().getContextClassLoader();

 Class<?>[] classes = interfaceClass.getInterfaces();

 return (T) Proxy.newProxyInstance(classLoader, new Class[]{classes[0]},

handler);

}

1

2

3

4

5

6

public class JDKInvocationHandler implements InvocationHandler {

 private ICacheAdapter cacheAdapter;

 public JDKInvocationHandler(ICacheAdapter cacheAdapter) {

 this.cacheAdapter = cacheAdapter;

 }

 public Object invoke(Object proxy, Method method, Object[] args)

throws Throwable {

 return ICacheAdapter.class.getMethod(method.getName(),

ClassLoaderUtils.getClazzByArgs(args)).invoke(cacheAdapter, args);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

在测试的代码中通过传⼊入不不同的集群类型，就可以调⽤用不不同的集群下的⽅方
法。 JDKProxy.getProxy(CacheServiceImpl.class, new EGMCacheAdapter());

如果后续有扩展的需求，也可以按照这样的类型⽅方式进⾏行行补充，同时对于改造上来说并没有改动原
来的⽅方法，降低了了修改成本。

结果：

运⾏行行结果正常，这样的代码满⾜足了了这次拓拓展的需求，同时你的技术能⼒力力也给⽼老老板留留下了了深刻的印
象。
研发⾃自我能⼒力力的提升远不不是外接的压⼒力力就是编写⼀一坨坨代码的接⼝口，如果你已经熟练了了很多技能，
那么可以在即使紧急的情况下，也能做出完善的⽅方案。

六、总结

抽象⼯工⼚厂模式，所要解决的问题就是在⼀一个产品族，存在多个不不同类型的产品(Redis集群、操作系
统)情况下，接⼝口选择的问题。⽽而这种场景在业务开发中也是⾮非常多⻅见的，只不不过可能有时候没有
将它们抽象化出来。
你的代码只是被ifelse埋上了了！当你知道什什么场景下何时可以被抽象⼯工程优化代码，那么你的代码

层级结构以及满⾜足业务需求上，都可以得到很好的完成功能实现并提升扩展性和优雅度。
那么这个设计模式满⾜足了了；单⼀一职责、开闭原则、解耦等优点，但如果说随着业务的不不断拓拓展，可

@Test

public void test_CacheService() throws Exception {

 CacheService proxy_EGM = JDKProxy.getProxy(CacheServiceImpl.class, new

EGMCacheAdapter());

 proxy_EGM.set("user_name_01","⼩小傅哥");

 String val01 = proxy_EGM.get("user_name_01");

 System.out.println(val01);

 CacheService proxy_IIR = JDKProxy.getProxy(CacheServiceImpl.class, new

IIRCacheAdapter());

 proxy_IIR.set("user_name_01","⼩小傅哥");

 String val02 = proxy_IIR.get("user_name_01");

 System.out.println(val02);

}

1

2

3

4

5

6

7

8

9

10

11

12

23:07:06.953 [main] INFO org.itstack.demo.design.matter.EGM - EGM写⼊入数据

key：user_name_01 val：⼩小傅哥

23:07:06.956 [main] INFO org.itstack.demo.design.matter.EGM - EGM获取数据

key：user_name_01

测试结果：⼩小傅哥

23:07:06.957 [main] INFO org.itstack.demo.design.matter.IIR - IIR写⼊入数据

key：user_name_01 val：⼩小傅哥

23:07:06.957 [main] INFO org.itstack.demo.design.matter.IIR - IIR获取数据

key：user_name_01

测试结果：⼩小傅哥

Process finished with exit code 0

1

2

3

4

5

6

7

8

能会造成类实现上的复杂度。但也可以说算不不上缺点，因为可以随着其他设计⽅方式的引⼊入和代理理类
以及⾃自动⽣生成加载的⽅方式降低此项缺点。

⼯工程 描述

itstack-demo-design-3-00 场景模拟⼯工程，模拟装修过程中的套餐选择(豪华、⽥田园、简约)

itstack-demo-design-3-01 使⽤用⼀一坨代码实现业务需求，也是对ifelse的使⽤用

itstack-demo-design-3-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

第 3 节：建造者模式

乱码七糟 [luàn qī bā zāo]，我时常怀疑这个成语是来形容程序猿的！

⽆无论承接什什么样的需求，是不不是身边总有那么⼏几个⼈人代码写的烂，但是却时常有测试⼩小姐姐过来聊天(求
改bug)、有产品⼩小伙伴送吃的(求写需求)、有业务⼩小妹妹陪着改代码(求上线)，直⾄至领导都认为他的⼯工作
很重要，⽽而在旁边的你只能蹭点吃的。

那你说，CRUD的代码还想让我怎么样？

这样的⼩小伙伴，可能把代码写的很直接， ifelse多⽤用⼀一点，满⾜足于先临时⽀支持⼀一下，想着这也没什什么

的。⽽而且这样的业务需求要的急⼜又都是增删改查的内容，实在不不想做设计。⽽而如果有⼈人提到说好好设计
下，可能也会被反对不不要过渡设计。

贴膏药似的修修补补，⼀一次⽐比⼀一次恐怖！

第⼀一次完成产品需求实在是很快，但互联⽹网的代码不不⽐比传统企业。在传统⾏行行业可能⼀一套代码能⽤用⼗十年年，
但在互联⽹网⾼高速的迭代下你的⼯工程，⼀一年年就要变动⼏几⼗十次。如果从⼀一开始就想着只要完成功能就可以，
那么随之⽽而来的是后续的需求难以承接，每次看着成⽚片成⽚片的代码，实在不不知如何下⼿手。

在研发流程规范下执⾏行行，才能写出好程序！

⼀一个项⽬目的上线往往要经历业务需求、产品设计、研发实现、测试验证、上线部署到正式开量量，⽽而这

其中对研发⾮非常重要的⼀一换就是研发实现的过程，⼜又可以包括为；架构选型、功能设计、设计评审、

代码实现、代码评审、单测覆盖率检查、编写⽂文档、提交测试。所以在⼀一些流程规范下，其实很难让

你随意开发代码。

开发代码的过程不不是炫技，就像盖房⼦子如果不不按照图纸来修建，回⾸首就在⼭山墙上搭⼀一个厨房卫浴！可能

在现实场景中这很荒唐，但在功能开发中却总有这样的代码。

所以我们也需要⼀一些设计模式的标准思想，去建设代码结构，提升全局把控能⼒力力。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、建造者模式介绍

https://bugstack.cn/assets/images/qrcode.png

建造者模式所完成的内容就是通过将多个简单对象通过⼀一步步的组装构建出⼀一个复杂对象的过程。

那么，哪⾥里里有这样的场景呢？

例例如你玩王者荣耀的时的初始化界⾯面；有三条路路、有树⽊木、有野怪、有守卫塔等等，甚⾄至依赖于你的⽹网
络情况会控制清晰度。⽽而当你换⼀一个场景进⾏行行其他不不同模式的选择时，同样会建设道路路、树⽊木、野怪等
等，但是他们的摆放和⼤大⼩小都有不不同。这⾥里里就可以⽤用到建造者模式来初始化游戏元素。

⽽而这样的根据相同的物料料，不不同的组装所产⽣生出的具体的内容，就是建造者模式的最终意图，也就是；

将⼀一个复杂的构建与其表示相分离，使得同样的构建过程可以创建不不同的表示。

三、案例例场景模拟

这⾥里里我们模拟装修公司对于设计出⼀一些套餐装修服务的场景。

很多装修公司都会给出⾃自家的套餐服务，⼀一般有；欧式豪华、轻奢⽥田园、现代简约等等，⽽而这些套餐的
后⾯面是不不同的商品的组合。例例如；⼀一级&⼆二级吊顶、多乐⼠士涂料料、圣象地板、⻢马可波罗地砖等等，按照
不不同的套餐的价格选取不不同的品牌组合，最终再按照装修⾯面积给出⼀一个整体的报价。

这⾥里里我们就模拟装修公司想推出⼀一些套餐装修服务，按照不不同的价格设定品牌选择组合，以达到使⽤用建
造者模式的过程。

1. 场景模拟⼯工程

在模拟⼯工程中提供了了装修中所需要的物料料； ceilling(吊顶)、 coat(涂料料)、 floor(地板)、

tile(地砖)，这么四项内容。（实际的装修物料料要⽐比这个多的多）

2. 场景简述

2.1 物料料接⼝口

itstack-demo-design-3-00

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" ceilling
 $ #"" LevelOneCeiling.java
 $!"" LevelTwoCeiling.java
 #"" coat
 $ #"" DuluxCoat.java
 $!"" LiBangCoat.java
 $!"" LevelTwoCeiling.java
 #"" floor
 $ #"" DerFloor.java
 $!"" ShengXiangFloor.java
 #"" tile
 $ #"" DongPengTile.java
 $!"" MarcoPoloTile.java
 !"" Matter.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

public interface Matter {

 String scene(); // 场景；地板、地砖、涂料料、吊顶

 String brand(); // 品牌

 String model(); // 型号

 BigDecimal price(); // 价格

 String desc(); // 描述

}

1

2

3

4

5

6

7

8

9

10

11

12

13

物料料接⼝口提供了了基本的信息，以保证所有的装修材料料都可以按照统⼀一标准进⾏行行获取。

2.2 吊顶(ceiling)

⼀一级顶

⼆二级顶

public class LevelOneCeiling implements Matter {

 public String scene() {

 return "吊顶";

 }

 public String brand() {

 return "装修公司⾃自带";

 }

 public String model() {

 return "⼀一级顶";

 }

 public BigDecimal price() {

 return new BigDecimal(260);

 }

 public String desc() {

 return "造型只做低⼀一级，只有⼀一个层次的吊顶，⼀一般离顶120-150mm";

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public class LevelTwoCeiling implements Matter {

 public String scene() {

 return "吊顶";

 }

 public String brand() {

 return "装修公司⾃自带";

 }

 public String model() {

 return "⼆二级顶";

 }

 public BigDecimal price() {

 return new BigDecimal(850);

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

2.3 涂料料(coat)

多乐⼠士

⽴立邦

 public String desc() {

 return "两个层次的吊顶，⼆二级吊顶⾼高度⼀一般就往下吊20cm，要是层⾼高很⾼高，也可增加

每级的厚度";

 }

}

18

19

20

21

22

23

public class DuluxCoat implements Matter {

 public String scene() {

 return "涂料料";

 }

 public String brand() {

 return "多乐⼠士(Dulux)";

 }

 public String model() {

 return "第⼆二代";

 }

 public BigDecimal price() {

 return new BigDecimal(719);

 }

 public String desc() {

 return "多乐⼠士是阿克苏诺⻉贝尔旗下的著名建筑装饰油漆品牌，产品畅销于全球100个国

家，每年年全球有5000万户家庭使⽤用多乐⼠士油漆。";

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public class LiBangCoat implements Matter {

 public String scene() {

 return "涂料料";

 }

 public String brand() {

 return "⽴立邦";

 }

1

2

3

4

5

6

7

8

9

10

2.4 地板(floor)

德尔

圣象

 public String model() {

 return "默认级别";

 }

 public BigDecimal price() {

 return new BigDecimal(650);

 }

 public String desc() {

 return "⽴立邦始终以开发绿⾊色产品、注重⾼高科技、⾼高品质为⽬目标，以技术⼒力力量量不不断推进科

研和开发，满⾜足消费者需求。";

 }

}

11

12

13

14

15

16

17

18

19

20

21

22

23

public class DerFloor implements Matter {

 public String scene() {

 return "地板";

 }

 public String brand() {

 return "德尔(Der)";

 }

 public String model() {

 return "A+";

 }

 public BigDecimal price() {

 return new BigDecimal(119);

 }

 public String desc() {

 return "DER德尔集团是全球领先的专业⽊木地板制造商，北北京2008年年奥运会家装和公装

地板供应商";

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public class ShengXiangFloor implements Matter {

 public String scene() {

1

2

3

2.5 地砖(tile)

东鹏

 return "地板";

 }

 public String brand() {

 return "圣象";

 }

 public String model() {

 return "⼀一级";

 }

 public BigDecimal price() {

 return new BigDecimal(318);

 }

 public String desc() {

 return "圣象地板是中国地板⾏行行业著名品牌。圣象地板拥有中国驰名商标、中国名牌、国

家免检、中国环境标志认证等多项荣誉。";

 }

}

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public class DongPengTile implements Matter {

 public String scene() {

 return "地砖";

 }

 public String brand() {

 return "东鹏瓷砖";

 }

 public String model() {

 return "10001";

 }

 public BigDecimal price() {

 return new BigDecimal(102);

 }

 public String desc() {

 return "东鹏瓷砖以品质铸就品牌，科技推动品牌，⼝口碑碑传播品牌为宗旨，2014年年品牌

价值132.35亿元，位列列建陶⾏行行业榜⾸首。";

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

⻢马可波罗

以上就是本次装修公司所提供的装修配置单，接下我们会通过案例例去使⽤用不不同的物料料组合出不不同的

套餐服务。

四、⽤用⼀一坨坨代码实现

讲道理理没有ifelse解决不不了了的逻辑，不不⾏行行就在加⼀一⾏行行！

每⼀一个章节中我们都会使⽤用这样很直⽩白的⽅方式去把功能实现出来，在通过设计模式去优化完善。这样的
代码结构也都是⾮非常简单的，没有复杂的类关系结构，都是直来直去的代码。除了了我们经常强调的这样
的代码不不能很好的扩展外，做⼀一些例例⼦子demo⼯工程还是可以的。

1. ⼯工程结构

}23

public class MarcoPoloTile implements Matter {

 public String scene() {

 return "地砖";

 }

 public String brand() {

 return "⻢马可波罗(MARCO POLO)";

 }

 public String model() {

 return "缺省";

 }

 public BigDecimal price() {

 return new BigDecimal(140);

 }

 public String desc() {

 return "“⻢马可波罗”品牌诞⽣生于1996年年，作为国内最早品牌化的建陶品牌，以“⽂文化陶

瓷”占领市场，享有“仿古砖⾄至尊”的美誉。";

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

itstack-demo-design-3-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" DecorationPackageController.java

1

2

3

4

5

6

⼀一个类⼏几千⾏行行的代码你是否⻅见过，嚯？那今天就让你⻅见识⼀一下有这样潜质的类！

2. ifelse实现需求

public class DecorationPackageController {

 public String getMatterList(BigDecimal area, Integer level) {

 List<Matter> list = new ArrayList<Matter>(); // 装修清单

 BigDecimal price = BigDecimal.ZERO; // 装修价格

 // 豪华欧式

 if (1 == level) {

 LevelTwoCeiling levelTwoCeiling = new LevelTwoCeiling(); // 吊

顶，⼆二级顶

 DuluxCoat duluxCoat = new DuluxCoat(); // 涂

料料，多乐⼠士

 ShengXiangFloor shengXiangFloor = new ShengXiangFloor(); // 地

板，圣象

 list.add(levelTwoCeiling);

 list.add(duluxCoat);

 list.add(shengXiangFloor);

 price = price.add(area.multiply(new

BigDecimal("0.2")).multiply(levelTwoCeiling.price()));

 price = price.add(area.multiply(new

BigDecimal("1.4")).multiply(duluxCoat.price()));

 price = price.add(area.multiply(shengXiangFloor.price()));

 }

 // 轻奢⽥田园

 if (2 == level) {

 LevelTwoCeiling levelTwoCeiling = new LevelTwoCeiling(); // 吊

顶，⼆二级顶

 LiBangCoat liBangCoat = new LiBangCoat(); // 涂

料料，⽴立邦

 MarcoPoloTile marcoPoloTile = new MarcoPoloTile(); // 地

砖，⻢马可波罗

 list.add(levelTwoCeiling);

 list.add(liBangCoat);

 list.add(marcoPoloTile);

 price = price.add(area.multiply(new

BigDecimal("0.2")).multiply(levelTwoCeiling.price()));

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

 price = price.add(area.multiply(new

BigDecimal("1.4")).multiply(liBangCoat.price()));

 price = price.add(area.multiply(marcoPoloTile.price()));

 }

 // 现代简约

 if (3 == level) {

 LevelOneCeiling levelOneCeiling = new LevelOneCeiling(); //

吊顶，⼆二级顶

 LiBangCoat liBangCoat = new LiBangCoat(); //

涂料料，⽴立邦

 DongPengTile dongPengTile = new DongPengTile(); //

地砖，东鹏

 list.add(levelOneCeiling);

 list.add(liBangCoat);

 list.add(dongPengTile);

 price = price.add(area.multiply(new

BigDecimal("0.2")).multiply(levelOneCeiling.price()));

 price = price.add(area.multiply(new

BigDecimal("1.4")).multiply(liBangCoat.price()));

 price = price.add(area.multiply(dongPengTile.price()));

 }

 StringBuilder detail = new StringBuilder("\r\n--------------------

-----------------------------------\r\n" +

 "装修清单" + "\r\n" +

 "套餐等级：" + level + "\r\n" +

 "套餐价格：" + price.setScale(2, BigDecimal.ROUND_HALF_UP) +

" 元\r\n" +

 "房屋⾯面积：" + area.doubleValue() + " 平⽶米\r\n" +

 "材料料清单：\r\n");

 for (Matter matter: list) {

 detail.append(matter.scene()).append("：").append(matter.brand()).append(

"、").append(matter.model()).append("、平⽶米价

格：").append(matter.price()).append(" 元。\n");

 }

 return detail.toString();

 }

}

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

⾸首先这段代码所要解决的问题就是接收⼊入参；装修⾯面积(area)、装修等级(level)，根据不不同类型的
装修等级选择不不同的材料料。
其次在实现过程中可以看到每⼀一段 if块⾥里里，都包含着不不通的材料料(吊顶，⼆二级顶、涂料料，⽴立邦、地
砖，⻢马可波罗)，最终⽣生成装修清单和装修成本。
最后提供获取装修详细信息的⽅方法，返回给调⽤用⽅方，⽤用于知道装修清单。

3. 测试验证

接下来我们通过junit单元测试的⽅方式验证接⼝口服务，强调⽇日常编写好单测可以更更好的提⾼高系统的健壮
度。

编写测试类：

结果：

@Test

public void test_DecorationPackageController(){

 DecorationPackageController decoration = new

DecorationPackageController();

 // 豪华欧式

 System.out.println(decoration.getMatterList(new

BigDecimal("132.52"),1));

 // 轻奢⽥田园

 System.out.println(decoration.getMatterList(new

BigDecimal("98.25"),2));

 // 现代简约

 System.out.println(decoration.getMatterList(new

BigDecimal("85.43"),3));

}

1

2

3

4

5

6

7

8

9

10

装修清单

套餐等级：1

套餐价格：198064.39 元

房屋⾯面积：132.52 平⽶米

材料料清单：

吊顶：装修公司⾃自带、⼆二级顶、平⽶米价格：850 元。

涂料料：多乐⼠士(Dulux)、第⼆二代、平⽶米价格：719 元。

地板：圣象、⼀一级、平⽶米价格：318 元。

装修清单

套餐等级：2

套餐价格：119865.00 元

房屋⾯面积：98.25 平⽶米

材料料清单：

吊顶：装修公司⾃自带、⼆二级顶、平⽶米价格：850 元。

涂料料：⽴立邦、默认级别、平⽶米价格：650 元。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

看到输出的这个结果，已经很有装修公司提供报价单的感觉了了。以上这段使⽤用 ifelse⽅方式实现的

代码，⽬目前已经满⾜足的我们的也许功能。但随着⽼老老板对业务的快速发展要求，会提供很多的套餐针
对不不同的户型。那么这段实现代码将迅速扩增到⼏几千⾏行行，甚⾄至在修修改改中，已经像膏药⼀一样难以
维护。

五、建造者模式重构代码

接下来使⽤用建造者模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

建造者模式主要解决的问题是在软件系统中，有时候⾯面临着"⼀一个复杂对象"的创建⼯工作，其通常由各个
部分的⼦子对象⽤用⼀一定的过程构成；由于需求的变化，这个复杂对象的各个部分经常⾯面临着重⼤大的变化，
但是将它们组合在⼀一起的过程却相对稳定。

这⾥里里我们会把构建的过程交给创建者类，⽽而创建者通过使⽤用我们的构建⼯工具包，去构建出不不同的装修套

餐。

1. ⼯工程结构

建造者模型结构

地砖：⻢马可波罗(MARCO POLO)、缺省、平⽶米价格：140 元。

装修清单

套餐等级：3

套餐价格：90897.52 元

房屋⾯面积：85.43 平⽶米

材料料清单：

吊顶：装修公司⾃自带、⼀一级顶、平⽶米价格：260 元。

涂料料：⽴立邦、默认级别、平⽶米价格：650 元。

地砖：东鹏瓷砖、10001、平⽶米价格：102 元。

Process finished with exit code 0

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

itstack-demo-design-3-02

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" Builder.java
 $ #"" DecorationPackageMenu.java
 $!"" IMenu.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

⼯工程中有三个核⼼心类和⼀一个测试类，核⼼心类是建造者模式的具体实现。与 ifelse实现⽅方式相⽐比，多出

来了了两个⼆二外的类。具体功能如下；

Builder，建造者类具体的各种组装由此类实现。

DecorationPackageMenu，是 IMenu接⼝口的实现类，主要是承载建造过程中的填充器器。相当于

这是⼀一套承载物料料和创建者中间衔接的内容。

好，那么接下来会分别讲解⼏几个类的具体实现。

2. 代码实现

2.1 定义装修包接⼝口

接⼝口类中定义了了填充各项物料料的⽅方法；吊顶、涂料料、地板、地砖，以及最终提供获取全部明细

的⽅方法。

2.2 装修包实现

public interface IMenu {

 IMenu appendCeiling(Matter matter); // 吊顶

 IMenu appendCoat(Matter matter); // 涂料料

 IMenu appendFloor(Matter matter); // 地板

 IMenu appendTile(Matter matter); // 地砖

 String getDetail(); // 明细

}

1

2

3

4

5

6

7

8

9

10

11

12

13

public class DecorationPackageMenu implements IMenu {

 private List<Matter> list = new ArrayList<Matter>(); // 装修清单

 private BigDecimal price = BigDecimal.ZERO; // 装修价格

1

2

3

4

5

 private BigDecimal area; // ⾯面积

 private String grade; // 装修等级；豪华欧式、轻奢⽥田园、现代简约

 private DecorationPackageMenu() {

 }

 public DecorationPackageMenu(Double area, String grade) {

 this.area = new BigDecimal(area);

 this.grade = grade;

 }

 public IMenu appendCeiling(Matter matter) {

 list.add(matter);

 price = price.add(area.multiply(new

BigDecimal("0.2")).multiply(matter.price()));

 return this;

 }

 public IMenu appendCoat(Matter matter) {

 list.add(matter);

 price = price.add(area.multiply(new

BigDecimal("1.4")).multiply(matter.price()));

 return this;

 }

 public IMenu appendFloor(Matter matter) {

 list.add(matter);

 price = price.add(area.multiply(matter.price()));

 return this;

 }

 public IMenu appendTile(Matter matter) {

 list.add(matter);

 price = price.add(area.multiply(matter.price()));

 return this;

 }

 public String getDetail() {

 StringBuilder detail = new StringBuilder("\r\n--------------------

-----------------------------------\r\n" +

 "装修清单" + "\r\n" +

 "套餐等级：" + grade + "\r\n" +

 "套餐价格：" + price.setScale(2, BigDecimal.ROUND_HALF_UP) +

" 元\r\n" +

 "房屋⾯面积：" + area.doubleValue() + " 平⽶米\r\n" +

 "材料料清单：\r\n");

 for (Matter matter: list) {

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

装修包的实现中每⼀一个⽅方法都会了了 this，也就可以⾮非常⽅方便便的⽤用于连续填充各项物料料。
同时在填充时也会根据物料料计算平⽶米数下的报价，吊顶和涂料料按照平⽶米数适量量乘以常熟计算。
最后同样提供了了统⼀一的获取装修清单的明细⽅方法。

2.3 建造者⽅方法

建造者的使⽤用中就已经⾮非常容易易了了，统⼀一的建造⽅方式，通过不不同物料料填充出不不同的装修⻛风格；豪华

欧式、轻奢⽥田园、现代简约，如果将来业务扩展也可以将这部分内容配置到数据库⾃自动⽣生成。但

整体的思想还可以使⽤用创建者模式进⾏行行搭建。

3. 测试验证

编写测试类：

 detail.append(matter.scene()).append("：").append(matter.brand()).append(

"、").append(matter.model()).append("、平⽶米价

格：").append(matter.price()).append(" 元。\n");

 }

 return detail.toString();

 }

}

51

52

53

54

55

56

57

public class Builder {

 public IMenu levelOne(Double area) {

 return new DecorationPackageMenu(area, "豪华欧式")

 .appendCeiling(new LevelTwoCeiling()) // 吊顶，⼆二级顶

 .appendCoat(new DuluxCoat()) // 涂料料，多乐⼠士

 .appendFloor(new ShengXiangFloor()); // 地板，圣象

 }

 public IMenu levelTwo(Double area){

 return new DecorationPackageMenu(area, "轻奢⽥田园")

 .appendCeiling(new LevelTwoCeiling()) // 吊顶，⼆二级顶

 .appendCoat(new LiBangCoat()) // 涂料料，⽴立邦

 .appendTile(new MarcoPoloTile()); // 地砖，⻢马可波罗

 }

 public IMenu levelThree(Double area){

 return new DecorationPackageMenu(area, "现代简约")

 .appendCeiling(new LevelOneCeiling()) // 吊顶，⼆二级顶

 .appendCoat(new LiBangCoat()) // 涂料料，⽴立邦

 .appendTile(new DongPengTile()); // 地砖，东鹏

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

结果：

@Test

public void test_Builder(){

 Builder builder = new Builder();

 // 豪华欧式

 System.out.println(builder.levelOne(132.52D).getDetail());

 // 轻奢⽥田园

 System.out.println(builder.levelTwo(98.25D).getDetail());

 // 现代简约

 System.out.println(builder.levelThree(85.43D).getDetail());

}

1

2

3

4

5

6

7

8

9

10

装修清单

套餐等级：豪华欧式

套餐价格：198064.39 元

房屋⾯面积：132.52 平⽶米

材料料清单：

吊顶：装修公司⾃自带、⼆二级顶、平⽶米价格：850 元。

涂料料：多乐⼠士(Dulux)、第⼆二代、平⽶米价格：719 元。

地板：圣象、⼀一级、平⽶米价格：318 元。

装修清单

套餐等级：轻奢⽥田园

套餐价格：119865.00 元

房屋⾯面积：98.25 平⽶米

材料料清单：

吊顶：装修公司⾃自带、⼆二级顶、平⽶米价格：850 元。

涂料料：⽴立邦、默认级别、平⽶米价格：650 元。

地砖：⻢马可波罗(MARCO POLO)、缺省、平⽶米价格：140 元。

装修清单

套餐等级：现代简约

套餐价格：90897.52 元

房屋⾯面积：85.43 平⽶米

材料料清单：

吊顶：装修公司⾃自带、⼀一级顶、平⽶米价格：260 元。

涂料料：⽴立邦、默认级别、平⽶米价格：650 元。

地砖：东鹏瓷砖、10001、平⽶米价格：102 元。

Process finished with exit code 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

测试结果是⼀一样的，调⽤用⽅方式也基本类似。但是⽬目前的代码结构却可以让你很⽅方便便的很有调理理的进
⾏行行扩展业务开发。⽽而不不是以往⼀一样把所有代码都写到 ifelse⾥里里⾯面。

六、总结

通过上⾯面对建造者模式的使⽤用，已经可以摸索出⼀一点⼼心得。那就是什什么时候会选择这样的设计模
式，当：⼀一些基本物料料不不会变，⽽而其组合经常变化的时候，就可以选择这样的设计模式来构建代码。

此设计模式满⾜足了了单⼀一职责原则以及可复⽤用的技术、建造者独⽴立、易易扩展、便便于控制细节⻛风险。但
同时当出现特别多的物料料以及很多的组合后，类的不不断扩展也会造成难以维护的问题。但这种设计
结构模型可以把重复的内容抽象到数据库中，按照需要配置。这样就可以减少代码中⼤大量量的重复。
设计模式能带给你的是⼀一些思想，但在平时的开发中怎么样清晰的提炼出符合此思路路的建造模块，
是⽐比较难的。需要经过⼀一些锻炼和不不断承接更更多的项⽬目，从⽽而获得这部分经验。有的时候你的代码
写的好，往往是倒逼的，复杂的业务频繁的变化，不不断的挑战！

第 4 节：原型模式

⼯工程 描述

itstack-demo-design-4-00 场景模拟⼯工程，模拟在线考试题库抽提打乱顺序

itstack-demo-design-4-01 使⽤用⼀一坨代码实现业务需求，也是对ifelse的使⽤用

itstack-demo-design-4-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

第 4 节：原型模式

⽼老老板你加钱我的代码能⻜飞

程序员这份⼯工作⾥里里有两种⼈人；⼀一类是热爱喜欢的、⼀一类是仅当成⼯工作的。⽽而喜欢代码编程的这部分⼈人会
极其主动学习去丰富⾃自⼰己的⽻羽翼，也⾮非常喜欢对技术探索⼒力力求将学到的知识赋能到平时的业务需求开发
中。对于这部分⼩小伙伴来说上班写代码还能赚钱真的是幸福！

怎么成为喜欢编码都那部分⼈人

⽆无论做哪⾏行行那业你都喜欢，往往来⾃自从中持续不不断都获取成就感。就开发编程⽽而⾔言因为你的⼀一⾏行行代码影
响到了了千千万万的⼈人、因为你的⼀一⾏行行代码整个系统更更加稳定、因为你的⼀一⾏行行代码扛过了了所有秒杀等等，
这样⼀一⾏行行⾏行行的代码都是你⽇日积⽉月累学习到的经验。那如果你也想成为这样有成就感的程序员就需要不不断
的学习，不不断的⽤用更更多的技能知识把⾃自⼰己编写的代码运⽤用到更更核⼼心的系统。

⽅方向不不对努⼒力力⽩白费

平常你也付出了了很多的时间，但就是没有得到多少收益。就像有时候很多⼩小伙伴问我，我是该怎么学⼀一
个我没接触过的内容。我的个⼈人经验⾮非常建议，先不不要学太多理理论性的内容，⽽而是尝试实际操作下，把
要学的内容做⼀一些Demo案例例出来。这有点像你买了了个⾃自⾏行行⻋车是先拆了了学学怎么个原理理，还是先骑⼏几圈
呢？哪怕摔了了跟头，但那都是必须经历后留留下的经验。

同样我也知道很多⼈人看了了设计模式收获不不⼤大，这主要新⼈人对没有案例例或者案例例不不贴近实际场景没有学习
⽅方向导致。太空、太虚、太⽞玄，让⼈人没有抓⼿手！

所以我开始编写以实际案例例为着⼿手的⽅方式，讲解设计模式的⽂文章，帮助⼤大家成⻓长的同时也让我⾃自⼰己有所
沉淀！

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、原型模式介绍

https://bugstack.cn/assets/images/qrcode.png

原型模式主要解决的问题就是创建重复对象，⽽而这部分对象内容本身⽐比较复杂，⽣生成过程可能从库或者

RPC接⼝口中获取数据的耗时较⻓长，因此采⽤用克隆隆的⽅方式节省时间。

其实这种场景经常出现在我们的身边，只不不过很少⽤用到⾃自⼰己的开发中，就像；

1. 你经常 Ctrl+C、 Ctrl+V，复制粘贴代码。

2. Java多数类中提供的API⽅方法； Object clone()。

3. 细胞的有丝分裂。

类似以上的场景并不不少，但如果让你去思考平时的代码开发中，有⽤用到这样的设计模式吗？确实不不那么
容易易找到，甚⾄至有时候是忽略略了了这个设计模式的⽅方式。在没有阅读下⽂文之前，也可以思考下哪些场景可
以⽤用到。

三、案例例场景模拟

每个⼈人都经历过考试，从纸制版到上机答题，⼤大⼤大⼩小⼩小也有⼏几百场。⽽而以前坐在教室⾥里里答题身边的⼈人都
是⼀一套试卷，考试的时候还能偷摸或者别⼈人给发信息抄⼀一抄答案。

但从⼀一部分可以上机考试的内容开始，在保证⼤大家的公平性⼀一样的题⽬目下，开始出现试题混排更更有做的
好的答案选项也混排。这样⼤大⼤大的增加了了抄的成本，也更更好的做到了了考试的公平性。

但如果这个公平性的考试需求交给你来完成，你会怎么做？

因为需要实现⼀一个上机考试抽题的服务，因此在这⾥里里建造⼀一个题库题⽬目的场景类信息，⽤用于创建；选择

题、问答题。

1. 场景模拟⼯工程

在这⾥里里模拟了了两个试卷题⽬目的类； ChoiceQuestion (选择题)、 AnswerQuestion (问答题)。如果
是实际的业务场景开发中，会有更更多的题⽬目类型，可以回忆⼀一下你的⾼高考试卷。

2. 场景简述

2.1 选择题

itstack-demo-design-4-00

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" AnswerQuestion.java
 !"" ChoiceQuestion.java

1

2

3

4

5

6

7

2.2 问答题

以上两个类就是我们场景中需要的物料料内容，相对来说⽐比较简单。如果你在测试的时候想扩充学
习，可以继续添加⼀一些其他物料料(题⽬目类型)。

四、⽤用⼀一坨坨代码实现

今天的实现⽅方式没有ifelse了了，但是没有⼀一个类解决不不了了的业务，只要你胆⼤大！

在以下的例例⼦子中我们会按照每⼀一个⽤用户创建试卷的题⽬目，并返回给调⽤用⽅方。

1. ⼯工程结构

public class ChoiceQuestion {

 private String name; // 题⽬目

 private Map<String, String> option; // 选项；A、B、C、D

 private String key; // 答案；B

 public ChoiceQuestion() {

 }

 public ChoiceQuestion(String name, Map<String, String> option, String

key) {

 this.name = name;

 this.option = option;

 this.key = key;

 }

 // ...get/set

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public class AnswerQuestion {

 private String name; // 问题

 private String key; // 答案

 public AnswerQuestion() {

 }

 public AnswerQuestion(String name, String key) {

 this.name = name;

 this.key = key;

 }

 // ...get/set

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

⼀一个类⼏几千⾏行行的代码你是否⻅见过，嚯？那今天就再让你⻅见识⼀一下有这样潜质的类！

2. ⼀一把梭实现需求

itstack-demo-design-4-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" QuestionBankController.java

1

2

3

4

5

6

public class QuestionBankController {

 public String createPaper(String candidate, String number) {

 List<ChoiceQuestion> choiceQuestionList = new

ArrayList<ChoiceQuestion>();

 List<AnswerQuestion> answerQuestionList = new

ArrayList<AnswerQuestion>();

 Map<String, String> map01 = new HashMap<String, String>();

 map01.put("A", "JAVA2 EE");

 map01.put("B", "JAVA2 Card");

 map01.put("C", "JAVA2 ME");

 map01.put("D", "JAVA2 HE");

 map01.put("E", "JAVA2 SE");

 Map<String, String> map02 = new HashMap<String, String>();

 map02.put("A", "JAVA程序的main⽅方法必须写在类⾥里里⾯面");

 map02.put("B", "JAVA程序中可以有多个main⽅方法");

 map02.put("C", "JAVA程序中类名必须与⽂文件名⼀一样");

 map02.put("D", "JAVA程序的main⽅方法中如果只有⼀一条语句句，可以不不⽤用{}(⼤大括号)括

起来");

 Map<String, String> map03 = new HashMap<String, String>();

 map03.put("A", "变量量由字⺟母、下划线、数字、$符号随意组成；");

 map03.put("B", "变量量不不能以数字作为开头；");

 map03.put("C", "A和a在java中是同⼀一个变量量；");

 map03.put("D", "不不同类型的变量量，可以起相同的名字；");

 Map<String, String> map04 = new HashMap<String, String>();

 map04.put("A", "STRING");

 map04.put("B", "x3x;");

 map04.put("C", "void");

 map04.put("D", "de$f");

 Map<String, String> map05 = new HashMap<String, String>();

 map05.put("A", "31");

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 map05.put("B", "0");

 map05.put("C", "1");

 map05.put("D", "2");

 choiceQuestionList.add(new ChoiceQuestion("JAVA所定义的版本中不不包括",

map01, "D"));

 choiceQuestionList.add(new ChoiceQuestion("下列列说法正确的是", map02,

"A"));

 choiceQuestionList.add(new ChoiceQuestion("变量量命名规范说法正确的是",

map03, "B"));

 choiceQuestionList.add(new ChoiceQuestion("以下()不不是合法的标识符",

map04, "C"));

 choiceQuestionList.add(new ChoiceQuestion("表达式(11+3*8)/4%3的值

是", map05, "D"));

 answerQuestionList.add(new AnswerQuestion("⼩小红⻢马和⼩小⿊黑⻢马⽣生的⼩小⻢马⼏几条

腿", "4条腿"));

 answerQuestionList.add(new AnswerQuestion("铁棒打头疼还是⽊木棒打头疼",

"头最疼"));

 answerQuestionList.add(new AnswerQuestion("什什么床不不能睡觉", "⽛牙床"));

 answerQuestionList.add(new AnswerQuestion("为什什么好⻢马不不吃回头草", "后

⾯面的草没了了"));

 // 输出结果

 StringBuilder detail = new StringBuilder("考⽣生：" + candidate +

"\r\n" +

 "考号：" + number + "\r\n" +

 "--\r\n" +

 "⼀一、选择题" + "\r\n\n");

 for (int idx = 0; idx < choiceQuestionList.size(); idx++) {

 detail.append("第").append(idx +

1).append("题：").append(choiceQuestionList.get(idx).getName()).append("\r\

n");

 Map<String, String> option =

choiceQuestionList.get(idx).getOption();

 for (String key : option.keySet()) {

 detail.append(key).append("：").append(option.get(key)).append("\r\n");

 ;

 }

 detail.append("答

案：").append(choiceQuestionList.get(idx).getKey()).append("\r\n\n");

 }

 detail.append("⼆二、问答题" + "\r\n\n");

 for (int idx = 0; idx < answerQuestionList.size(); idx++) {

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

这样的代码往往都⾮非常易易于理理解，要什什么程序就给什什么代码，不不⾯面向对象，只⾯面向过程。不不考虑扩
展性，能⽤用就⾏行行。
以上的代码主要就三部分内容；⾸首先创建选择题和问答题到集合中、定义详情字符串串包装结果、返
回结果内容。
但以上的代码有⼀一个没有实现的地⽅方就是不不能乱序，所有⼈人的试卷顺序都是⼀一样的。如果需要加乱
序也是可以的，但复杂度⼜又会增加。这⾥里里不不展示具体过多实现，只为后⽂文对⽐比重构。

3. 测试验证

接下来我们通过junit单元测试的⽅方式验证接⼝口服务，强调⽇日常编写好单测可以更更好的提⾼高系统的健壮
度。

编写测试类：

结果：

 detail.append("第").append(idx +

1).append("题：").append(answerQuestionList.get(idx).getName()).append("\r\

n");

 detail.append("答

案：").append(answerQuestionList.get(idx).getKey()).append("\r\n\n");

 }

 return detail.toString();

 }

}

68

69

70

71

72

73

74

75

@Test

public void test_QuestionBankController() {

 QuestionBankController questionBankController = new

QuestionBankController();

 System.out.println(questionBankController.createPaper("花花",

"1000001921032"));

 System.out.println(questionBankController.createPaper("⾖豆⾖豆",

"1000001921051"));

 System.out.println(questionBankController.createPaper("⼤大宝",

"1000001921987"));

}

1

2

3

4

5

6

7

考⽣生：花花

考号：1000001921032

--

⼀一、选择题

第1题：JAVA所定义的版本中不不包括

A：JAVA2 EE

B：JAVA2 Card

C：JAVA2 ME

1

2

3

4

5

6

7

8

9

D：JAVA2 HE

E：JAVA2 SE

答案：D

第2题：下列列说法正确的是

A：JAVA程序的main⽅方法必须写在类⾥里里⾯面

B：JAVA程序中可以有多个main⽅方法

C：JAVA程序中类名必须与⽂文件名⼀一样

D：JAVA程序的main⽅方法中如果只有⼀一条语句句，可以不不⽤用{}(⼤大括号)括起来

答案：A

第3题：变量量命名规范说法正确的是

A：变量量由字⺟母、下划线、数字、$符号随意组成；

B：变量量不不能以数字作为开头；

C：A和a在java中是同⼀一个变量量；

D：不不同类型的变量量，可以起相同的名字；

答案：B

第4题：以下()不不是合法的标识符

A：STRING

B：x3x;

C：void

D：de$f

答案：C

第5题：表达式(11+3*8)/4%3的值是

A：31

B：0

C：1

D：2

答案：D

⼆二、问答题

第1题：⼩小红⻢马和⼩小⿊黑⻢马⽣生的⼩小⻢马⼏几条腿

答案：4条腿

第2题：铁棒打头疼还是⽊木棒打头疼

答案：头最疼

第3题：什什么床不不能睡觉

答案：⽛牙床

第4题：为什什么好⻢马不不吃回头草

答案：后⾯面的草没了了

考⽣生：⾖豆⾖豆

考号：1000001921051

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

--

⼀一、选择题

第1题：JAVA所定义的版本中不不包括

A：JAVA2 EE

B：JAVA2 Card

C：JAVA2 ME

D：JAVA2 HE

E：JAVA2 SE

答案：D

第2题：下列列说法正确的是

A：JAVA程序的main⽅方法必须写在类⾥里里⾯面

B：JAVA程序中可以有多个main⽅方法

C：JAVA程序中类名必须与⽂文件名⼀一样

D：JAVA程序的main⽅方法中如果只有⼀一条语句句，可以不不⽤用{}(⼤大括号)括起来

答案：A

第3题：变量量命名规范说法正确的是

A：变量量由字⺟母、下划线、数字、$符号随意组成；

B：变量量不不能以数字作为开头；

C：A和a在java中是同⼀一个变量量；

D：不不同类型的变量量，可以起相同的名字；

答案：B

第4题：以下()不不是合法的标识符

A：STRING

B：x3x;

C：void

D：de$f

答案：C

第5题：表达式(11+3*8)/4%3的值是

A：31

B：0

C：1

D：2

答案：D

⼆二、问答题

第1题：⼩小红⻢马和⼩小⿊黑⻢马⽣生的⼩小⻢马⼏几条腿

答案：4条腿

第2题：铁棒打头疼还是⽊木棒打头疼

答案：头最疼

第3题：什什么床不不能睡觉

答案：⽛牙床

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

第4题：为什什么好⻢马不不吃回头草

答案：后⾯面的草没了了

考⽣生：⼤大宝

考号：1000001921987

--

⼀一、选择题

第1题：JAVA所定义的版本中不不包括

A：JAVA2 EE

B：JAVA2 Card

C：JAVA2 ME

D：JAVA2 HE

E：JAVA2 SE

答案：D

第2题：下列列说法正确的是

A：JAVA程序的main⽅方法必须写在类⾥里里⾯面

B：JAVA程序中可以有多个main⽅方法

C：JAVA程序中类名必须与⽂文件名⼀一样

D：JAVA程序的main⽅方法中如果只有⼀一条语句句，可以不不⽤用{}(⼤大括号)括起来

答案：A

第3题：变量量命名规范说法正确的是

A：变量量由字⺟母、下划线、数字、$符号随意组成；

B：变量量不不能以数字作为开头；

C：A和a在java中是同⼀一个变量量；

D：不不同类型的变量量，可以起相同的名字；

答案：B

第4题：以下()不不是合法的标识符

A：STRING

B：x3x;

C：void

D：de$f

答案：C

第5题：表达式(11+3*8)/4%3的值是

A：31

B：0

C：1

D：2

答案：D

⼆二、问答题

第1题：⼩小红⻢马和⼩小⿊黑⻢马⽣生的⼩小⻢马⼏几条腿

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

以上呢就是三位考试的试卷；花花、⾖豆⾖豆、⼤大宝，每个⼈人的试卷内容是⼀一样的这没问题，但是三

个⼈人的题⽬目以及选项顺序都是⼀一样，就没有达到我们说希望的乱序要求。
⽽而且以上这样的代码⾮非常难扩展，随着题⽬目的不不断的增加以及乱序功能的补充，都会让这段代码变
得越来越混乱。

五、原型模式重构代码

接下来使⽤用原型模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

原型模式主要解决的问题就是创建⼤大量量重复的类，⽽而我们模拟的场景就需要给不不同的⽤用户都创建相同的
试卷，但这些试卷的题⽬目不不便便于每次都从库中获取，甚⾄至有时候需要从远程的RPC中获取。这样都是⾮非
常耗时的，⽽而且随着创建对象的增多将严重影响效率。

在原型模式中所需要的⾮非常重要的⼿手段就是克隆隆，在需要⽤用到克隆隆的类中都需要实现 implements
Cloneable 接⼝口。

1. ⼯工程结构

原型模式模型结构

答案：4条腿

第2题：铁棒打头疼还是⽊木棒打头疼

答案：头最疼

第3题：什什么床不不能睡觉

答案：⽛牙床

第4题：为什什么好⻢马不不吃回头草

答案：后⾯面的草没了了

Process finished with exit code 0

157

158

159

160

161

162

163

164

165

166

167

168

itstack-demo-design-4-02

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" util
 $ $ #"" Topic.java
 $ $!"" TopicRandomUtil.java
 $ #"" QuestionBank.java
 $!"" QuestionBankController.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

⼯工程中包括了了核⼼心的题库类 QuestionBank，题库中主要负责将各个的题⽬目进⾏行行组装最终输出试

卷。
针对每⼀一个试卷都会使⽤用克隆隆的⽅方式进⾏行行复制，复制完成后将试卷中题⽬目以及每个题⽬目的答案进⾏行行
乱序处理理。这⾥里里提供了了⼯工具包；TopicRandomUtil

2. 代码实现

2.1 题⽬目选项乱序操作⼯工具包

可能你还记得上⽂文⾥里里我们提供了了Map存储题⽬目选项，同时key的属性存放答案。如果忘记可以往上

/**

 * 乱序Map元素，记录对应答案key

 * @param option 题⽬目

 * @param key 答案

 * @return Topic 乱序后 {A=c., B=d., C=a., D=b.}

 */

static public Topic random(Map<String, String> option, String key) {

 Set<String> keySet = option.keySet();

 ArrayList<String> keyList = new ArrayList<String>(keySet);

 Collections.shuffle(keyList);

 HashMap<String, String> optionNew = new HashMap<String, String>();

 int idx = 0;

 String keyNew = "";

 for (String next : keySet) {

 String randomKey = keyList.get(idx++);

 if (key.equals(next)) {

 keyNew = randomKey;

 }

 optionNew.put(randomKey, option.get(next));

 }

 return new Topic(optionNew, keyNew);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

翻翻
这个这个⼯工具类的操作就是将原有Map中的选型乱序操作，也就是A的选项内容给B， B的可能给

C，同时记录正确答案在处理理后的位置信息。

2.2 克隆隆对象处理理类

public class QuestionBank implements Cloneable {

 private String candidate; // 考⽣生

 private String number; // 考号

 private ArrayList<ChoiceQuestion> choiceQuestionList = new

ArrayList<ChoiceQuestion>();

 private ArrayList<AnswerQuestion> answerQuestionList = new

ArrayList<AnswerQuestion>();

 public QuestionBank append(ChoiceQuestion choiceQuestion) {

 choiceQuestionList.add(choiceQuestion);

 return this;

 }

 public QuestionBank append(AnswerQuestion answerQuestion) {

 answerQuestionList.add(answerQuestion);

 return this;

 }

 @Override

 public Object clone() throws CloneNotSupportedException {

 QuestionBank questionBank = (QuestionBank) super.clone();

 questionBank.choiceQuestionList = (ArrayList<ChoiceQuestion>)

choiceQuestionList.clone();

 questionBank.answerQuestionList = (ArrayList<AnswerQuestion>)

answerQuestionList.clone();

 // 题⽬目乱序

 Collections.shuffle(questionBank.choiceQuestionList);

 Collections.shuffle(questionBank.answerQuestionList);

 // 答案乱序

 ArrayList<ChoiceQuestion> choiceQuestionList =

questionBank.choiceQuestionList;

 for (ChoiceQuestion question : choiceQuestionList) {

 Topic random = TopicRandomUtil.random(question.getOption(),

question.getKey());

 question.setOption(random.getOption());

 question.setKey(random.getKey());

 }

 return questionBank;

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

这⾥里里的主要操作内容有三个，分别是；

两个 append()，对各项题⽬目的添加，有点像我们在建造者模式中使⽤用的⽅方式，添加装修物料料。

 public void setCandidate(String candidate) {

 this.candidate = candidate;

 }

 public void setNumber(String number) {

 this.number = number;

 }

 @Override

 public String toString() {

 StringBuilder detail = new StringBuilder("考⽣生：" + candidate +

"\r\n" +

 "考号：" + number + "\r\n" +

 "--\r\n" +

 "⼀一、选择题" + "\r\n\n");

 for (int idx = 0; idx < choiceQuestionList.size(); idx++) {

 detail.append("第").append(idx +

1).append("题：").append(choiceQuestionList.get(idx).getName()).append("\r\

n");

 Map<String, String> option =

choiceQuestionList.get(idx).getOption();

 for (String key : option.keySet()) {

 detail.append(key).append("：").append(option.get(key)).append("\r\n");;

 }

 detail.append("答

案：").append(choiceQuestionList.get(idx).getKey()).append("\r\n\n");

 }

 detail.append("⼆二、问答题" + "\r\n\n");

 for (int idx = 0; idx < answerQuestionList.size(); idx++) {

 detail.append("第").append(idx +

1).append("题：").append(answerQuestionList.get(idx).getName()).append("\r\

n");

 detail.append("答

案：").append(answerQuestionList.get(idx).getKey()).append("\r\n\n");

 }

 return detail.toString();

 }

}

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

clone()，这⾥里里的核⼼心操作就是对对象的复制，这⾥里里的复制不不只是包括了了本身，同时对两个集合

也做了了复制。只有这样的拷⻉贝才能确保在操作克隆隆对象的时候不不影响原对象。
乱序操作，在 list集合中有⼀一个⽅方法， Collections.shuffle，可以将原有集合的顺序打乱，

输出⼀一个新的顺序。在这⾥里里我们使⽤用此⽅方法对题⽬目进⾏行行乱序操作。

2.4 初始化试卷数据

public class QuestionBankController {

 private QuestionBank questionBank = new QuestionBank();

 public QuestionBankController() {

 Map<String, String> map01 = new HashMap<String, String>();

 map01.put("A", "JAVA2 EE");

 map01.put("B", "JAVA2 Card");

 map01.put("C", "JAVA2 ME");

 map01.put("D", "JAVA2 HE");

 map01.put("E", "JAVA2 SE");

 Map<String, String> map02 = new HashMap<String, String>();

 map02.put("A", "JAVA程序的main⽅方法必须写在类⾥里里⾯面");

 map02.put("B", "JAVA程序中可以有多个main⽅方法");

 map02.put("C", "JAVA程序中类名必须与⽂文件名⼀一样");

 map02.put("D", "JAVA程序的main⽅方法中如果只有⼀一条语句句，可以不不⽤用{}(⼤大括号)括

起来");

 Map<String, String> map03 = new HashMap<String, String>();

 map03.put("A", "变量量由字⺟母、下划线、数字、$符号随意组成；");

 map03.put("B", "变量量不不能以数字作为开头；");

 map03.put("C", "A和a在java中是同⼀一个变量量；");

 map03.put("D", "不不同类型的变量量，可以起相同的名字；");

 Map<String, String> map04 = new HashMap<String, String>();

 map04.put("A", "STRING");

 map04.put("B", "x3x;");

 map04.put("C", "void");

 map04.put("D", "de$f");

 Map<String, String> map05 = new HashMap<String, String>();

 map05.put("A", "31");

 map05.put("B", "0");

 map05.put("C", "1");

 map05.put("D", "2");

 questionBank.append(new ChoiceQuestion("JAVA所定义的版本中不不包括",

map01, "D"))

 .append(new ChoiceQuestion("下列列说法正确的是", map02, "A"))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

这个类的内容就⽐比较简单了了，主要提供对试卷内容的模式初始化操作(所有考⽣生试卷⼀一样，题⽬目顺
序不不⼀一致)。
以及对外部提供创建试卷的⽅方法，在创建的过程中使⽤用的是克隆隆的⽅方式； (QuestionBank)

questionBank.clone();，并最终返回试卷信息。

3. 测试验证

编写测试类：

结果：

 .append(new ChoiceQuestion("变量量命名规范说法正确的是", map03,

"B"))

 .append(new ChoiceQuestion("以下()不不是合法的标识符",map04,

"C"))

 .append(new ChoiceQuestion("表达式(11+3*8)/4%3的值是",

map05, "D"))

 .append(new AnswerQuestion("⼩小红⻢马和⼩小⿊黑⻢马⽣生的⼩小⻢马⼏几条腿", "4条

腿"))

 .append(new AnswerQuestion("铁棒打头疼还是⽊木棒打头疼", "头最

疼"))

 .append(new AnswerQuestion("什什么床不不能睡觉", "⽛牙床"))

 .append(new AnswerQuestion("为什什么好⻢马不不吃回头草", "后⾯面的草没

了了"));

 }

 public String createPaper(String candidate, String number) throws

CloneNotSupportedException {

 QuestionBank questionBankClone = (QuestionBank)

questionBank.clone();

 questionBankClone.setCandidate(candidate);

 questionBankClone.setNumber(number);

 return questionBankClone.toString();

 }

}

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

@Test

public void test_QuestionBank() throws CloneNotSupportedException {

 QuestionBankController questionBankController = new

QuestionBankController();

 System.out.println(questionBankController.createPaper("花花",

"1000001921032"));

 System.out.println(questionBankController.createPaper("⾖豆⾖豆",

"1000001921051"));

 System.out.println(questionBankController.createPaper("⼤大宝",

"1000001921987"));

}

1

2

3

4

5

6

7

考⽣生：花花

考号：1000001921032

--

⼀一、选择题

第1题：JAVA所定义的版本中不不包括

A：JAVA2 Card

B：JAVA2 HE

C：JAVA2 EE

D：JAVA2 ME

E：JAVA2 SE

答案：B

第2题：表达式(11+3*8)/4%3的值是

A：1

B：0

C：31

D：2

答案：D

第3题：以下()不不是合法的标识符

A：void

B：de$f

C：STRING

D：x3x;

答案：A

第4题：下列列说法正确的是

A：JAVA程序的main⽅方法中如果只有⼀一条语句句，可以不不⽤用{}(⼤大括号)括起来

B：JAVA程序中可以有多个main⽅方法

C：JAVA程序的main⽅方法必须写在类⾥里里⾯面

D：JAVA程序中类名必须与⽂文件名⼀一样

答案：C

第5题：变量量命名规范说法正确的是

A：变量量由字⺟母、下划线、数字、$符号随意组成；

B：A和a在java中是同⼀一个变量量；

C：不不同类型的变量量，可以起相同的名字；

D：变量量不不能以数字作为开头；

答案：D

⼆二、问答题

第1题：⼩小红⻢马和⼩小⿊黑⻢马⽣生的⼩小⻢马⼏几条腿

答案：4条腿

第2题：什什么床不不能睡觉

答案：⽛牙床

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

第3题：铁棒打头疼还是⽊木棒打头疼

答案：头最疼

第4题：为什什么好⻢马不不吃回头草

答案：后⾯面的草没了了

考⽣生：⾖豆⾖豆

考号：1000001921051

--

⼀一、选择题

第1题：下列列说法正确的是

A：JAVA程序中可以有多个main⽅方法

B：JAVA程序的main⽅方法必须写在类⾥里里⾯面

C：JAVA程序的main⽅方法中如果只有⼀一条语句句，可以不不⽤用{}(⼤大括号)括起来

D：JAVA程序中类名必须与⽂文件名⼀一样

答案：B

第2题：表达式(11+3*8)/4%3的值是

A：2

B：1

C：31

D：0

答案：A

第3题：以下()不不是合法的标识符

A：void

B：de$f

C：x3x;

D：STRING

答案：A

第4题：JAVA所定义的版本中不不包括

A：JAVA2 Card

B：JAVA2 HE

C：JAVA2 ME

D：JAVA2 EE

E：JAVA2 SE

答案：B

第5题：变量量命名规范说法正确的是

A：变量量不不能以数字作为开头；

B：A和a在java中是同⼀一个变量量；

C：不不同类型的变量量，可以起相同的名字；

D：变量量由字⺟母、下划线、数字、$符号随意组成；

答案：A

⼆二、问答题

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

第1题：什什么床不不能睡觉

答案：⽛牙床

第2题：铁棒打头疼还是⽊木棒打头疼

答案：头最疼

第3题：为什什么好⻢马不不吃回头草

答案：后⾯面的草没了了

第4题：⼩小红⻢马和⼩小⿊黑⻢马⽣生的⼩小⻢马⼏几条腿

答案：4条腿

考⽣生：⼤大宝

考号：1000001921987

--

⼀一、选择题

第1题：以下()不不是合法的标识符

A：x3x;

B：de$f

C：void

D：STRING

答案：C

第2题：表达式(11+3*8)/4%3的值是

A：31

B：0

C：2

D：1

答案：C

第3题：变量量命名规范说法正确的是

A：不不同类型的变量量，可以起相同的名字；

B：变量量由字⺟母、下划线、数字、$符号随意组成；

C：变量量不不能以数字作为开头；

D：A和a在java中是同⼀一个变量量；

答案：C

第4题：下列列说法正确的是

A：JAVA程序的main⽅方法中如果只有⼀一条语句句，可以不不⽤用{}(⼤大括号)括起来

B：JAVA程序的main⽅方法必须写在类⾥里里⾯面

C：JAVA程序中类名必须与⽂文件名⼀一样

D：JAVA程序中可以有多个main⽅方法

答案：B

第5题：JAVA所定义的版本中不不包括

A：JAVA2 EE

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

从以上的输出结果可以看到，每个⼈人的题⽬目和答案都是差异化的乱序的，如下图⽐比对结果； - 花花、⾖豆
⾖豆、⼤大宝，每个⼈人的试卷都存在着题⽬目和选项的混乱排序

六、总结

以上的实际场景模拟了了原型模式在开发中重构的作⽤用，但是原型模式的使⽤用频率确实不不是很⾼高。如
果有⼀一些特殊场景需要使⽤用到，也可以按照此设计模式进⾏行行优化。
另外原型设计模式的优点包括；便便于通过克隆隆⽅方式创建复杂对象、也可以避免重复做初始化操作、
不不需要与类中所属的其他类耦合等。但也有⼀一些缺点如果对象中包括了了循环引⽤用的克隆隆，以及类中
深度使⽤用对象的克隆隆，都会使此模式变得异常麻烦。
终究设计模式是⼀一整套的思想，在不不同的场景合理理的运⽤用可以提升整体的架构的质量量。永远不不要想

B：JAVA2 Card

C：JAVA2 HE

D：JAVA2 SE

E：JAVA2 ME

答案：C

⼆二、问答题

第1题：为什什么好⻢马不不吃回头草

答案：后⾯面的草没了了

第2题：⼩小红⻢马和⼩小⿊黑⻢马⽣生的⼩小⻢马⼏几条腿

答案：4条腿

第3题：什什么床不不能睡觉

答案：⽛牙床

第4题：铁棒打头疼还是⽊木棒打头疼

答案：头最疼

Process finished with exit code 0

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

着去硬凑设计模式，否则将会引起过渡设计，以及在承接业务反复变化的需求时造成浪费的开发和
维护成本。
初期是代码的优化，中期是设计模式的使⽤用，后期是把控全局服务的搭建。不不断的加强⾃自⼰己对全局
能⼒力力的把控，也加深⾃自⼰己对细节的处理理。可上可下才是⼀一个程序员最佳处理理⽅方式，选取做合适的才
是最好的选择。

第 5 节：单例例模式

5个创建型模式的最后⼀一个

在设计模式中按照不不同的处理理⽅方式共包含三⼤大类；创建型模式、结构型模式和⾏行行为模式，其中创建型模
式⽬目前已经介绍了了其中的四个；⼯工⼚厂⽅方法模式、抽象⼯工⼚厂模式、⽣生成器器模式和原型模式，除此之外还有

最后⼀一个单例例模式。

掌握了了的知识才是⾃自⼰己的

在本次编写的重学 Java 设计模式的编写中尽可能多的⽤用各种场景案例例还介绍设计的使⽤用，包括我们已
经使⽤用过的场景；各种类型奖品发放、多套Redis缓存集群升级、装修公司报价清单和百份考卷题⽬目与答

案乱序，通过这些场景案例例的实践感受设计模式的思想。但这些场景都是作者通过经验分离出来的，还

并不不是读者的知识，所以你如果希望可以融会贯通的掌握那么⼀一定要亲⼒力力亲为的操作，事必躬亲的完
成。

书不不是看的是⽤用的

在这⾥里里还是想强调⼀一下学习⽅方法，总有很多⼩小伙伴对学习知识有疑惑，明明看了了、看的时候也懂了了，但
到了了实际使⽤用的时候却⽤用不不上。或者有时候在想是不不要是有更更加⽣生动的漫画或者什什么对⽐比会好些，当然
这些⽅方式可能会加快⼀一个新⼈人对知识的理理解速度。但只要你把学习视频当电影看、学习书籍当故事看，
就很难掌握这项技术栈。只有你把它⽤用起来，逐字逐句句的深挖，⼀一点点的探求，把各项遇到的盲点全部
扫清，才能让你真的掌握这项技能。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程1个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，找
到序号18)

⼆二、单例例模式介绍

https://bugstack.cn/assets/images/qrcode.png

单例例模式可以说是整个设计中最简单的模式之⼀一，⽽而且这种⽅方式即使在没有看设计模式相关资料料也会常
⽤用在编码开发中。

因为在编程开发中经常会遇到这样⼀一种场景，那就是需要保证⼀一个类只有⼀一个实例例哪怕多线程同时访
问，并需要提供⼀一个全局访问此实例例的点。

综上以及我们平常的开发中，可以总结⼀一条经验，单例例模式主要解决的是，⼀一个全局使⽤用的类频繁的创
建和消费，从⽽而提升提升整体的代码的性能。

三、案例例场景

本章节的技术所出现的场景⾮非常简单也是我们⽇日常开发所能⻅见到的，例例如；

1. 数据库的连接池不不会反复创建
2. spring中⼀一个单例例模式bean的⽣生成和使⽤用
3. 在我们平常的代码中需要设置全局的的⼀一些属性保存

在我们的⽇日常开发中⼤大致上会出现如上这些场景中使⽤用到单例例模式，虽然单例例模式并不不复杂但是使⽤用⾯面
却⽐比较⼴广。

四、7种单例例模式实现

单例例模式的实现⽅方式⽐比较多，主要在实现上是否⽀支持懒汉模式、是否线程安全中运⽤用各项技巧。当然也
有⼀一些场景不不需要考虑懒加载也就是懒汉模式的情况，会直接使⽤用 static静态类或属性和⽅方法的⽅方式

进⾏行行处理理，供外部调⽤用。

那么接下来我们就通过实现不不同⽅方式的实现进⾏行行讲解单例例模式。

0. 静态类使⽤用

以上这种⽅方式在我们平常的业务开发中⾮非常场常⻅见，这样静态类的⽅方式可以在第⼀一次运⾏行行的时候直
接初始化Map类，同时这⾥里里我们也不不需要到延迟加载在使⽤用。
在不不需要维持任何状态下，仅仅⽤用于全局访问，这个使⽤用使⽤用静态类的⽅方式更更加⽅方便便。
但如果需要被继承以及需要维持⼀一些特定状态的情况下，就适合使⽤用单例例模式。

1. 懒汉模式(线程不不安全)

单例例模式有⼀一个特点就是不不允许外部直接创建，也就是 new Singleton_01()，因此这⾥里里在默认

的构造函数上添加了了私有属性 private。
⽬目前此种⽅方式的单例例确实满⾜足了了懒加载，但是如果有多个访问者同时去获取对象实例例你可以想象成
⼀一堆⼈人在抢厕所，就会造成多个同样的实例例并存，从⽽而没有达到单例例的要求。

2. 懒汉模式(线程安全)

public class Singleton_00 {

 public static Map<String,String> cache = new ConcurrentHashMap<String,

String>();

}

1

2

3

4

5

public class Singleton_01 {

 private static Singleton_01 instance;

 private Singleton_01() {

 }

 public static Singleton_01 getInstance(){

 if (null != instance) return instance;

 instance = new Singleton_01();

 return instance;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public class Singleton_02 {

 private static Singleton_02 instance;

 private Singleton_02() {

 }

 public static synchronized Singleton_02 getInstance(){

 if (null != instance) return instance;

 instance = new Singleton_02();

 return instance;

 }

1

2

3

4

5

6

7

8

9

10

11

12

此种模式虽然是安全的，但由于把锁加到⽅方法上后，所有的访问都因需要锁占⽤用导致资源的浪费。
如果不不是特殊情况下，不不建议此种⽅方式实现单例例模式。

3. 饿汉模式(线程安全)

此种⽅方式与我们开头的第⼀一个实例例化 Map基本⼀一致，在程序启动的时候直接运⾏行行加载，后续有外

部需要使⽤用的时候获取即可。
但此种⽅方式并不不是懒加载，也就是说⽆无论你程序中是否⽤用到这样的类都会在程序启动之初进⾏行行创
建。
那么这种⽅方式导致的问题就像你下载个游戏软件，可能你游戏地图还没有打开呢，但是程序已经将
这些地图全部实例例化。到你⼿手机上最明显体验就⼀一开游戏内存满了了，⼿手机卡了了，需要换了了。

4. 使⽤用类的内部类(线程安全)

使⽤用类的静态内部类实现的单例例模式，既保证了了线程安全有保证了了懒加载，同时不不会因为加锁的⽅方
式耗费性能。
这主要是因为JVM虚拟机可以保证多线程并发访问的正确性，也就是⼀一个类的构造⽅方法在多线程环

}

13

14

public class Singleton_03 {

 private static Singleton_03 instance = new Singleton_03();

 private Singleton_03() {

 }

 public static Singleton_03 getInstance() {

 return instance;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

public class Singleton_04 {

 private static class SingletonHolder {

 private static Singleton_04 instance = new Singleton_04();

 }

 private Singleton_04() {

 }

 public static Singleton_04 getInstance() {

 return SingletonHolder.instance;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

境下可以被正确的加载。
此种⽅方式也是⾮非常推荐使⽤用的⼀一种单例例模式

5. 双重锁校验(线程安全)

双重锁的⽅方式是⽅方法级锁的优化，减少了了部分获取实例例的耗时。
同时这种⽅方式也满⾜足了了懒加载。

6. CAS「AtomicReference」(线程安全)

public class Singleton_05 {

 private static Singleton_05 instance;

 private Singleton_05() {

 }

 public static Singleton_05 getInstance(){

 if(null != instance) return instance;

 synchronized (Singleton_05.class){

 if (null == instance){

 instance = new Singleton_05();

 }

 }

 return instance;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

public class Singleton_06 {

 private static final AtomicReference<Singleton_06> INSTANCE = new

AtomicReference<Singleton_06>();

 private static Singleton_06 instance;

 private Singleton_06() {

 }

 public static final Singleton_06 getInstance() {

 for (; ;) {

 Singleton_06 instance = INSTANCE.get();

 if (null != instance) return instance;

 INSTANCE.compareAndSet(null, new Singleton_06());

 return INSTANCE.get();

 }

 }

 public static void main(String[] args) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

java并发库提供了了很多原⼦子类来⽀支持并发访问的数据安全
性； AtomicInteger、 AtomicBoolean、 AtomicLong、 AtomicReference。

AtomicReference 可以封装引⽤用⼀一个V实例例，⽀支持并发访问如上的单例例⽅方式就是使⽤用了了这样的⼀一个
特点。
使⽤用CAS的好处就是不不需要使⽤用传统的加锁⽅方式保证线程安全，⽽而是依赖于CAS的忙等算法，依赖
于底层硬件的实现，来保证线程安全。相对于其他锁的实现没有线程的切换和阻塞也就没有了了额外
的开销，并且可以⽀支持较⼤大的并发性。
当然CAS也有⼀一个缺点就是忙等，如果⼀一直没有获取到将会处于死循环中。

7. Effective Java作者推荐的枚举单例例(线程安全)

约书亚·布洛洛克（英语：Joshua J. Bloch，1961年年8⽉月28⽇日－），美国著名程序员。他为Java平台
设计并实作了了许多的功能，曾担任Google的⾸首席Java架构师（Chief Java Architect）。

Effective Java 作者推荐使⽤用枚举的⽅方式解决单例例模式，此种⽅方式可能是平时最少⽤用到的。
这种⽅方式解决了了最主要的；线程安全、⾃自由串串⾏行行化、单⼀一实例例。

调⽤用⽅方式

这种写法在功能上与共有域⽅方法相近，但是它更更简洁，⽆无偿地提供了了串串⾏行行化机制，绝对防⽌止对此实例例
化，即使是在⾯面对复杂的串串⾏行行化或者反射攻击的时候。虽然这中⽅方法还没有⼴广泛采⽤用，但是单元素的枚
举类型已经成为实现Singleton的最佳⽅方法。

但也要知道此种⽅方式在存在继承场景下是不不可⽤用的。

五、总结

虽然只是⼀一个很平常的单例例模式，但在各种的实现上真的可以看到java的基本功的体现，这⾥里里包括

 System.out.println(Singleton_06.getInstance()); //

org.itstack.demo.design.Singleton_06@2b193f2d

 System.out.println(Singleton_06.getInstance()); //

org.itstack.demo.design.Singleton_06@2b193f2d

 }

}

20

21

22

23

24

public enum Singleton_07 {

 INSTANCE;

 public void test(){

 System.out.println("hi~");

 }

}

1

2

3

4

5

6

7

8

@Test

public void test() {

 Singleton_07.INSTANCE.test();

1

2

3

了了；懒汉、饿汉、线程是否安全、静态类、内部类、加锁、串串⾏行行化等等。
在平时的开发中如果可以确保此类是全局可⽤用不不需要做懒加载，那么直接创建并给外部调⽤用即可。
但如果是很多的类，有些需要在⽤用户触发⼀一定的条件后(游戏关卡)才显示，那么⼀一定要⽤用懒加载。
线程的安全上可以按需选择。
建议在学习的过程中⼀一定要加以实践，否则很难完完整整的掌握⼀一整套的知识体系。例例如案例例中的
出现的 Effective Java⼀一书也⾮非常建议⼤大家阅读。另外推荐下这位⼤大神的

Github：https://github.com/jbloch

结构型模式(7节)
这类模式介绍如何将对象和类组装成较⼤大的结构， 并同时保持结构的灵活和⾼高效。

结构型模式包括：适配器器、桥接、组合、装饰器器、外观、享元、代理理，这7类。

https://github.com/jbloch

第 1 节：适配器器模式

擦屁屁纸80%的⾯面积都是保护⼿手的！

⼯工程 描述

itstack-demo-design-6-00 场景模拟⼯工程；模拟多个MQ消息体

itstack-demo-design-6-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-6-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

⼯工作到3年年左右很⼤大⼀一部分程序员都想提升⾃自⼰己的技术栈，开始尝试去阅读⼀一些源码，例例如
Spring、 Mybaits、 Dubbo等，但读着读着发现越来越难懂，⼀一会从这过来⼀一会跑到那去。甚⾄至怀疑

⾃自⼰己技术太差，慢慢也就不不愿意再触碰这部分知识。

⽽而这主要的原因是⼀一个框架随着时间的发展，它的复杂程度是越来越⾼高的，从最开始只有⼀一个⾮非常核⼼心
的点到最后开枝散叶。这就像你⾃自⼰己开发的业务代码或者某个组件⼀一样，最开始的那部分核⼼心代码也许
只能占到20%，⽽而其他⼤大部分代码都是为了了保证核⼼心流程能正常运⾏行行的。所以这也是你读源码费劲的⼀一
部分原因。

框架中⽤用到了了设计模式吗？

框架中不不仅⽤用到设计模式还⽤用了了很多，⽽而且有些时候根本不不是⼀一个模式的单独使⽤用，⽽而是多种设计模式
的综合运⽤用。与⼤大部分⼩小伙伴平时开发的CRUD可就不不⼀一样了了，如果都是if语句句从上到下，也就算得不不上
什什么框架了了。就像你到Spring的源码中搜关键字 Adapter，就会出现很多实现类，例例

如； UserCredentialsDataSourceAdapter。⽽而这种设计模式就是我们本⽂文要介绍的适配器器模式。

适配器器在⽣生活⾥里里随处可⻅见

如果提到在⽇日常⽣生活中就很多适配器器的存在你会想到什什么？在没有看后⽂文之前可以先思考下。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、适配器器模式介绍

https://bugstack.cn/assets/images/qrcode.png

适配器器模式的主要作⽤用就是把原本不不兼容的接⼝口，通过适配修改做到统⼀一。使得⽤用户⽅方便便使⽤用，就像我
们提到的万能充、数据线、MAC笔记本的转换头、出国旅游买个插座等等，他们都是为了了适配各种不不同
的⼝口，做的兼容。。

除了了我们⽣生活中出现的各种适配的场景，那么在业务开发中呢？

在业务开发中我们会经常的需要做不不同接⼝口的兼容，尤其是中台服务，中台需要把各个业务线的各种类
型服务做统⼀一包装，再对外提供接⼝口进⾏行行使⽤用。⽽而这在我们平常的开发中也是⾮非常常⻅见的。

三、案例例场景模拟

随着公司的业务的不不断发展，当基础的系统逐步成型以后。业务运营就需要开始做⽤用户的拉新和促活，
从⽽而保障 DUA的增速以及最终 ROI转换。

⽽而这时候就会需要做⼀一些营销系统，⼤大部分常⻅见的都是裂变、拉客，例例如；你邀请⼀一个⽤用户开户、或者
邀请⼀一个⽤用户下单，那么平台就会给你返利利，多邀多得。同时随着拉新的量量越来越多开始设置每⽉月下单
都会给⾸首单奖励，等等，各种营销场景。

那么这个时候做这样⼀一个系统就会接收各种各样的MQ消息或者接⼝口，如果⼀一个个的去开发，就会耗费
很⼤大的成本，同时对于后期的拓拓展也有⼀一定的难度。此时就会希望有⼀一个系统可以配置⼀一下就把外部的
MQ接⼊入进⾏行行，这些MQ就像上⾯面提到的可能是⼀一些注册开户消息、商品下单消息等等。

⽽而适配器器的思想⽅方式也恰恰可以运⽤用到这⾥里里，并且我想强调⼀一下，适配器器不不只是可以适配接⼝口往往还可
以适配⼀一些属性信息。

1. 场景模拟⼯工程

itstack-demo-design-6-00

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" mq
 $ #"" create_account.java
 $ #"" OrderMq.java
 $!"" POPOrderDelivered.java
 !"" service
 #"" OrderServicejava
 !"" POPOrderService.java

1

2

3

4

5

6

7

8

9

10

11

12

这⾥里里模拟了了三个不不同类型的MQ消息，⽽而在消息体中都有⼀一些必要的字段，⽐比如；⽤用户ID、时间、
业务ID，但是每个MQ的字段属性并不不⼀一样。就像⽤用户ID在不不同的MQ⾥里里也有不不同的字段：uId、
userId等。
同时还提供了了两个不不同类型的接⼝口，⼀一个⽤用于查询内部订单订单下单数量量，⼀一个⽤用于查询第三⽅方是
否⾸首单。
后⾯面会把这些不不同类型的MQ和接⼝口做适配兼容。

2. 场景简述

1.1 注册开户MQ

1.2 内部订单MQ

1.3 第三⽅方订单MQ

1.4 查询⽤用户内部下单数量量接⼝口

public class create_account {

 private String number; // 开户编号

 private String address; // 开户地

 private Date accountDate; // 开户时间

 private String desc; // 开户描述

 // ... get/set

}

1

2

3

4

5

6

7

8

9

public class OrderMq {

 private String uid; // ⽤用户ID

 private String sku; // 商品

 private String orderId; // 订单ID

 private Date createOrderTime; // 下单时间

 // ... get/set

}

1

2

3

4

5

6

7

8

9

public class POPOrderDelivered {

 private String uId; // ⽤用户ID

 private String orderId; // 订单号

 private Date orderTime; // 下单时间

 private Date sku; // 商品

 private Date skuName; // 商品名称

 private BigDecimal decimal; // ⾦金金额

 // ... get/set

}

1

2

3

4

5

6

7

8

9

10

11

1.5 查询⽤用户第三⽅方下单⾸首单接⼝口

以上这⼏几项就是不不同的MQ以及不不同的接⼝口的⼀一个体现，后⾯面我们将使⽤用这样的MQ消息和接⼝口，
给它们做相应的适配。

四、⽤用⼀一坨坨代码实现

其实⼤大部分时候接MQ消息都是创建⼀一个类⽤用于消费，通过转换他的MQ消息属性给⾃自⼰己的⽅方法。

我们接下来也是先体现⼀一下这种⽅方式的实现模拟，但是这样的实现有⼀一个很⼤大的问题就是，当MQ消息
越来越多后，甚⾄至⼏几⼗十⼏几百以后，你作为中台要怎么优化呢？

1. ⼯工程结构

⽬目前需要接收三个MQ消息，所有就有了了三个对应的类，和我们平时的代码⼏几乎⼀一样。如果你的

public class OrderService {

 private Logger logger =

LoggerFactory.getLogger(POPOrderService.class);

 public long queryUserOrderCount(String userId){

 logger.info("⾃自营商家，查询⽤用户的订单是否为⾸首单：{}", userId);

 return 10L;

 }

}

1

2

3

4

5

6

7

8

9

10

public class POPOrderService {

 private Logger logger =

LoggerFactory.getLogger(POPOrderService.class);

 public boolean isFirstOrder(String uId) {

 logger.info("POP商家，查询⽤用户的订单是否为⾸首单：{}", uId);

 return true;

 }

}

1

2

3

4

5

6

7

8

9

10

itstack-demo-design-6-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" create_accountMqService.java
 !"" OrderMqService.java
 !"" POPOrderDeliveredService.java

1

2

3

4

5

6

7

8

MQ量量不不多，这样的写法也没什什么问题，但是随着数量量的增加，就需要考虑⽤用⼀一些设计模式来解
决。

2. Mq接收消息实现

三组MQ的消息都是⼀一样模拟使⽤用，就不不⼀一⼀一展示了了。可以获取源码后学习。

五、适配器器模式重构代码

接下来使⽤用适配器器模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

适配器器模式要解决的主要问题就是多种差异化类型的接⼝口做统⼀一输出，这在我们学习⼯工⼚厂⽅方法模式中也
有所提到不不同种类的奖品处理理，其实那也是适配器器的应⽤用。

在本⽂文中我们还会再另外体现出⼀一个多种MQ接收，使⽤用MQ的场景。来把不不同类型的消息做统⼀一的处
理理，便便于减少后续对MQ接收。

在这⾥里里如果你之前没要开发过接收MQ消息，可能听上去会有些不不理理解这样的场景。对此，我个⼈人建议
先了了解下MQ。另外就算不不了了解也没关系，不不会影响对思路路的体会。

再者，本⽂文所展示的MQ兼容的核⼼心部分，也就是处理理适配不不同的类型字段。⽽而如果我们接收MQ后，在
配置不不同的消费类时，如果不不希望⼀一个个开发类，那么可以使⽤用代理理类的⽅方式进⾏行行处理理。

1. ⼯工程结构

public class create_accountMqService {

 public void onMessage(String message) {

 create_account mq = JSON.parseObject(message,

create_account.class);

 mq.getNumber();

 mq.getAccountDate();

 // ... 处理理⾃自⼰己的业务

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

适配器器模型结构

这⾥里里包括了了两个类型的适配；接⼝口适配、MQ适配。之所以不不只是模拟接⼝口适配，因为很多时候⼤大
家都很常⻅见了了，所以把适配的思想换⼀一下到MQ消息体上，增加⼤大家多设计模式的认知。
先是做MQ适配，接收各种各样的MQ消息。当业务发展的很快，需要对下单⽤用户⾸首单才给奖励，
在这样的场景下再增加对接⼝口的适配操作。

2. 代码实现(MQ消息适配)

2.1 统⼀一的MQ消息体

MQ消息中会有多种多样的类型属性，虽然他们都有同样的值提供给使⽤用⽅方，但是如果都这样接⼊入
那么当MQ消息特别多时候就会很麻烦。
所以在这个案例例中我们定义了了通⽤用的MQ消息体，后续把所有接⼊入进来的消息进⾏行行统⼀一的处理理。

itstack-demo-design-6-02

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" impl
 $ #"" InsideOrderService.java
 $!"" POPOrderAdapterServiceImpl.java
 #"" MQAdapter,java
 #"" OrderAdapterService,java
 !"" RebateInfo,java

1

2

3

4

5

6

7

8

9

10

11

public class RebateInfo {

 private String userId; // ⽤用户ID

 private String bizId; // 业务ID

 private Date bizTime; // 业务时间

 private String desc; // 业务描述

 // ... get/set

}

1

2

3

4

5

6

7

8

9

2.2 MQ消息体适配类

这个类⾥里里的⽅方法⾮非常重要，主要⽤用于把不不同类型MQ种的各种属性，映射成我们需要的属性并返
回。就像⼀一个属性中有⽤用户ID;uId，映射到我们需要的； userId，做统⼀一处理理。

⽽而在这个处理理过程中需要把映射管理理传递给 Map<String, String> link，也就是准确的描述

了了，当前MQ中某个属性名称，映射为我们的某个属性名称。
最终因为我们接收到的 mq消息基本都是 json格式，可以转换为MAP结构。最后使⽤用反射调⽤用的
⽅方式给我们的类型赋值。

2.3 测试适配类

2.3.1 编写单元测试类

public class MQAdapter {

 public static RebateInfo filter(String strJson, Map<String, String>

link) throws NoSuchMethodException, InvocationTargetException,

IllegalAccessException {

 return filter(JSON.parseObject(strJson, Map.class), link);

 }

 public static RebateInfo filter(Map obj, Map<String, String> link)

throws NoSuchMethodException, InvocationTargetException,

IllegalAccessException {

 RebateInfo rebateInfo = new RebateInfo();

 for (String key : link.keySet()) {

 Object val = obj.get(link.get(key));

 RebateInfo.class.getMethod("set" + key.substring(0,

1).toUpperCase() + key.substring(1), String.class).invoke(rebateInfo,

val.toString());

 }

 return rebateInfo;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

@Test

public void test_MQAdapter() throws NoSuchMethodException,

IllegalAccessException, InvocationTargetException {

 create_account create_account = new create_account();

 create_account.setNumber("100001");

 create_account.setAddress("河北北省.廊坊市.⼴广阳区.⼤大学⾥里里职业技术学院");

 create_account.setAccountDate(new Date());

 create_account.setDesc("在校开户");

 HashMap<String, String> link01 = new HashMap<String, String>();

 link01.put("userId", "number");

 link01.put("bizId", "number");

 link01.put("bizTime", "accountDate");

1

2

3

4

5

6

7

8

9

10

11

12

在这⾥里里我们分别模拟传⼊入了了两个不不同的MQ消息，并设置字段的映射关系。
等真的业务场景开发中，就可以配这种映射配置关系交给配置⽂文件或者数据库后台配置，减少编
码。

2.3.2 测试结果

从上⾯面可以看到，同样的字段值在做了了适配前后分别有统⼀一的字段属性，进⾏行行处理理。这样业务开发
中也就⾮非常简单了了。

 link01.put("desc", "desc");

 RebateInfo rebateInfo01 = MQAdapter.filter(create_account.toString(),

link01);

 System.out.println("mq.create_account(适配前)" +

create_account.toString());

 System.out.println("mq.create_account(适配后)" +

JSON.toJSONString(rebateInfo01));

 System.out.println("");

 OrderMq orderMq = new OrderMq();

 orderMq.setUid("100001");

 orderMq.setSku("10928092093111123");

 orderMq.setOrderId("100000890193847111");

 orderMq.setCreateOrderTime(new Date());

 HashMap<String, String> link02 = new HashMap<String, String>();

 link02.put("userId", "uid");

 link02.put("bizId", "orderId");

 link02.put("bizTime", "createOrderTime");

 RebateInfo rebateInfo02 = MQAdapter.filter(orderMq.toString(),

link02);

 System.out.println("mq.orderMq(适配前)" + orderMq.toString());

 System.out.println("mq.orderMq(适配后)" +

JSON.toJSONString(rebateInfo02));

}

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

mq.create_account(适配前){"accountDate":1591024816000,"address":"河北北省.廊坊

市.⼴广阳区.⼤大学⾥里里职业技术学院","desc":"在校开户","number":"100001"}

mq.create_account(适配后){"bizId":"100001","bizTime":1591077840669,"desc":"在

校开户","userId":"100001"}

mq.orderMq(适配前)

{"createOrderTime":1591024816000,"orderId":"100000890193847111","sku":"1092

8092093111123","uid":"100001"}

mq.orderMq(适配后)

{"bizId":"100000890193847111","bizTime":1591077840669,"userId":"100001"}

Process finished with exit code 0

1

2

3

4

5

6

7

接⼝口 描述

org.itstack.demo.design.service.OrderService.queryUserOrderCount(String userId) 出参long，查询订单数量量

org.itstack.demo.design.service.OrderService.POPOrderService.isFirstOrder(String uId) 出参boolean，判断是否⾸首单

另外有⼀一个⾮非常重要的地⽅方，在实际业务开发中，除了了反射的使⽤用外，还可以加⼊入代理理类把映射的
配置交给它。这样就可以不不需要每⼀一个mq都⼿手动创建类了了。

3. 代码实现(接⼝口使⽤用适配)

就像我们前⾯面提到随着业务的发展，营销活动本身要修改，不不能只是接了了MQ就发奖励。因为此时已经
拉新的越来越多了了，需要做⼀一些限制。

因为增加了了只有⾸首单⽤用户才给奖励，也就是你⼀一年年或者新⼈人或者⼀一个⽉月的第⼀一单才给你奖励，⽽而不不是你
之前每⼀一次下单都给奖励。

那么就需要对此种⽅方式进⾏行行限制，⽽而此时MQ中并没有判断⾸首单的属性。只能通过接⼝口进⾏行行查询，⽽而拿
到的接⼝口如下；

两个接⼝口的判断逻辑和使⽤用⽅方式都不不同，不不同的接⼝口提供⽅方，也有不不同的出参。⼀一个是直接判断是
否⾸首单，另外⼀一个需要根据订单数量量判断。
因此这⾥里里需要使⽤用到适配器器的模式来实现，当然如果你去编写if语句句也是可以实现的，但是我们经
常会提到这样的代码很难维护。

3.1 定义统⼀一适配接⼝口

后⾯面的实现类都需要完成此接⼝口，并把具体的逻辑包装到指定的类中，满⾜足单⼀一职责。

3.2 分别实现两个不不同的接⼝口

内部商品接⼝口

第三⽅方商品接⼝口

public interface OrderAdapterService {

 boolean isFirst(String uId);

}

1

2

3

4

5

public class InsideOrderService implements OrderAdapterService {

 private OrderService orderService = new OrderService();

 public boolean isFirst(String uId) {

 return orderService.queryUserOrderCount(uId) <= 1;

 }

}

1

2

3

4

5

6

7

8

9

在这两个接⼝口中都实现了了各⾃自的判断⽅方式，尤其像是提供订单数量量的接⼝口，需要⾃自⼰己判断当前接到
mq时订单数量量是否 <= 1，以此判断是否为⾸首单。

3.3 测试适配类

3.3.1 编写单元测试类

3.3.2 测试结果

从测试结果上来看，此时已经的接⼝口已经做了了统⼀一的包装，外部使⽤用时候就不不需要关⼼心内部的具体
逻辑了了。⽽而且在调⽤用的时候只需要传⼊入统⼀一的参数即可，这样就满⾜足了了适配的作⽤用。

六、总结

从上⽂文可以看到不不使⽤用适配器器模式这些功能同样可以实现，但是使⽤用了了适配器器模式就可以让代码：
⼲干净整洁易易于维护、减少⼤大量量重复的判断和使⽤用、让代码更更加易易于维护和拓拓展。
尤其是我们对MQ这样的多种消息体中不不同属性同类的值，进⾏行行适配再加上代理理类，就可以使⽤用简

public class POPOrderAdapterServiceImpl implements OrderAdapterService {

 private POPOrderService popOrderService = new POPOrderService();

 public boolean isFirst(String uId) {

 return popOrderService.isFirstOrder(uId);

 }

}

1

2

3

4

5

6

7

8

9

@Test

public void test_itfAdapter() {

 OrderAdapterService popOrderAdapterService = new

POPOrderAdapterServiceImpl();

 System.out.println("判断⾸首单，接⼝口适配(POP)：" +

popOrderAdapterService.isFirst("100001"));

 OrderAdapterService insideOrderService = new InsideOrderService();

 System.out.println("判断⾸首单，接⼝口适配(⾃自营)：" +

insideOrderService.isFirst("100001"));

}

1

2

3

4

5

6

7

8

23:25:47.076 [main] INFO o.i.d.design.service.POPOrderService - POP商家，查

询⽤用户的订单是否为⾸首单：100001

判断⾸首单，接⼝口适配(POP)：true

23:25:47.079 [main] INFO o.i.d.design.service.POPOrderService - ⾃自营商家，查

询⽤用户的订单是否为⾸首单：100001

判断⾸首单，接⼝口适配(⾃自营)：false

Process finished with exit code 0

1

2

3

4

5

6

单的配置⽅方式接⼊入对⽅方提供的MQ消息，⽽而不不需要⼤大量量重复的开发。⾮非常利利于拓拓展。
设计模式的学习学习过程可能会在⼀一些章节中涉及到其他设计模式的体现，只不不过不不会重点讲解，
避免喧宾夺主。但在实际的使⽤用中，往往很多设计模式是综合使⽤用的，并不不会单⼀一出现。

第 2 节：桥接模式

⼯工程 描述

itstack-demo-design-7-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-7-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

为什什么你的代码那么多ifelse

同类的业务、同样的功能，怎么就你能写出来那么多 ifelse。很多时候⼀一些刚刚从校园进⼊入企业的萌

新，或者⼀一部分从⼩小公司跳槽到⼤大企业的程序员，初次承接业务需求的时候，往往编码还不不成熟，经常
⼀一杆到底的写需求。初次实现确实很快，但是后期维护和扩展就⼗十分痛苦。因为⼀一段代码的可读性阅读
他后期的维护成本也就越⾼高。

设计模式是可以帮助你改善代码

很多时候你写出来的 ifelse都是没有考虑使⽤用设计模式优化，就像；同类服务的不不同接⼝口适配包装、

同类物料料不不同组合的建造、多种奖品组合的营销⼯工⼚厂等等。它们都可以让你代码中原本使⽤用 if判断的

地⽅方，变成⼀一组组类和⾯面向对象的实现过程。

怎么把设计模式和实际开发结合起来

多从实际场景思考，只找到代码优化的最佳点，不不要可以想着设计模式的使⽤用。就像你最开始看设计模
式适合，因为没有真实的场景模拟案例例，都是⼀一些画圆形、⽅方形，对新⼈人或者理理解能⼒力力还不不到的伙伴来
说很不不友好。所以即使学了了半天 ，但实际使⽤用还是摸不不着头脑。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、桥接模式介绍

https://bugstack.cn/assets/images/qrcode.png

桥接模式的主要作⽤用就是通过将抽象部分与实现部分分离，把多种可匹配的使⽤用进⾏行行组合。说⽩白了了核⼼心
实现也就是在A类中含有B类接⼝口，通过构造函数传递B类的实现，这个B类就是设计的桥。

那么这样的桥接模式，在我们平常的开发中有哪些场景

JDBC多种驱动程序的实现、同品牌类型的台式机和笔记本平板、业务实现中的多类接⼝口同组过滤服务
等。这些场景都⽐比较适合使⽤用桥接模式进⾏行行实现，因为在⼀一些组合中如果有如果每⼀一个类都实现不不同的
服务可能会出现笛卡尔积，⽽而使⽤用桥接模式就可以⾮非常简单。

三、案例例场景模拟

随着市场的竞争在⽀支付服务⾏行行业出现了了微信和⽀支付宝还包括⼀一些其他⽀支付服务，但是对于商家来说并不不
希望改变⽤用户习惯。就像如果我的地摊只能使⽤用微信或者只能使⽤用⽀支付宝付款，那么就会让我顾客伤
⼼心，鸡蛋灌饼也卖不不动了了。

在这个时候就出现了了第三⽅方平台，把市⾯面上综合占据市场90%以上的⽀支付服务都集中到⾃自⼰己平台中，再
把这样的平台提供给店铺、超市、地摊使⽤用，同时⽀支持⼈人脸、扫描、密码多种⽅方式。

我们这个案例例就模拟⼀一个这样的第三⽅方平台来承接各个⽀支付能⼒力力，同时使⽤用⾃自家的⼈人脸让⽤用户⽀支付起来
更更加容易易。那么这⾥里里就出现了了多⽀支付与多模式的融合使⽤用，如果给每⼀一个⽀支付都实现⼀一次不不同的模式，
即使是继承类也需要开发好多。⽽而且随着后⾯面接⼊入了了更更多的⽀支付服务或者⽀支付⽅方式，就会呈爆炸似的扩
展。

所以你现在可以思考⼀一下这样的场景该如何实现？

四、⽤用⼀一坨坨代码实现

产品经理理说⽼老老板要的需求，要尽快上，kpi你看着弄弄！

既然你逼我那就别怪我⽆无情，还没有我⼀一个类写不不完的需求！反正写完就完事了了，拿完绩效也要⾛走了了天
天逼着写需求，代码越来越乱⼼心疼后⾯面的兄弟3秒。

1. ⼯工程结构

只有⼀一个类⾥里里⾯面都是 ifelse，这个类实现了了⽀支付和模式的全部功能。

2. 代码实现

itstack-demo-design-7-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" PayController.java

1

2

3

4

5

6

public class PayController {

 private Logger logger = LoggerFactory.getLogger(PayController.class);

 public boolean doPay(String uId, String tradeId, BigDecimal amount,

int channelType, int modeType) {

 // 微信⽀支付

 if (1 == channelType) {

 logger.info("模拟微信渠道⽀支付划账开始。uId：{} tradeId：{} amount：

{}", uId, tradeId, amount);

 if (1 == modeType) {

 logger.info("密码⽀支付，⻛风控校验环境安全");

 } else if (2 == modeType) {

 logger.info("⼈人脸⽀支付，⻛风控校验脸部识别");

 } else if (3 == modeType) {

 logger.info("指纹⽀支付，⻛风控校验指纹信息");

1

2

3

4

5

6

7

8

9

10

11

12

13

14

上⾯面的类提供了了⼀一个⽀支付服务功能，通过提供的必要字段；⽤用户ID、交易易ID、⾦金金额、渠道、模

式，来控制⽀支付⽅方式。

以上的 ifelse应该是最差的⼀一种写法，即使写 ifelse也是可以优化的⽅方式去写的。

3. 测试验证

3.1 编写测试类

以上分别测试了了两种不不同的⽀支付类型和⽀支付模式；微信⼈人脸⽀支付、⽀支付宝指纹⽀支付

3.2 测试结果

 }

 }

 // ⽀支付宝⽀支付

 else if (2 == channelType) {

 logger.info("模拟⽀支付宝渠道⽀支付划账开始。uId：{} tradeId：{}

amount：{}", uId, tradeId, amount);

 if (1 == modeType) {

 logger.info("密码⽀支付，⻛风控校验环境安全");

 } else if (2 == modeType) {

 logger.info("⼈人脸⽀支付，⻛风控校验脸部识别");

 } else if (3 == modeType) {

 logger.info("指纹⽀支付，⻛风控校验指纹信息");

 }

 }

 return true;

 }

}

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

@Test

public void test_pay() {

 PayController pay = new PayController();

 System.out.println("\r\n模拟测试场景；微信⽀支付、⼈人脸⽅方式。");

 pay.doPay("weixin_1092033111", "100000109893", new BigDecimal(100), 1,

2);

 System.out.println("\r\n模拟测试场景；⽀支付宝⽀支付、指纹⽅方式。");

 pay.doPay("jlu19dlxo111","100000109894",new BigDecimal(100), 2, 3);

}

1

2

3

4

5

6

7

8

9

从测试结果看已经满⾜足了了我们的不不同⽀支付类型和⽀支付模式的组合，但是这样的代码在后⾯面的维护以
及扩展都会变得⾮非常复杂。

五、桥接模式重构代码

接下来使⽤用桥接模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

从上⾯面的 ifelse⽅方式实现来看，这是两种不不同类型的相互组合。那么就可以把⽀支付⽅方式和⽀支付模式进
⾏行行分离通过抽象类依赖实现类的⽅方式进⾏行行桥接，通过这样的拆分后⽀支付与模式其实是可以单独使⽤用的，
当需要组合时候只需要把模式传递给⽀支付即可。

桥接模式的关键是选择的桥接点拆分，是否可以找到这样类似的相互组合，如果没有就不不必要⾮非得使⽤用
桥接模式。

1. ⼯工程结构

模拟测试场景；微信⽀支付、⼈人脸⽅方式。

23:05:59.152 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟微信渠道⽀支付

划账开始。uId：weixin_1092033111 tradeId：100000109893 amount：100

23:05:59.155 [main] INFO o.i.demo.design.pay.mode.PayCypher - ⼈人脸⽀支付，⻛风

控校验脸部识别

23:05:59.155 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟微信渠道⽀支付

⻛风控校验。uId：weixin_1092033111 tradeId：100000109893 security：true

23:05:59.155 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟微信渠道⽀支付

划账成功。uId：weixin_1092033111 tradeId：100000109893 amount：100

模拟测试场景；⽀支付宝⽀支付、指纹⽅方式。

23:05:59.156 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟⽀支付宝渠道⽀支

付划账开始。uId：jlu19dlxo111 tradeId：100000109894 amount：100

23:05:59.156 [main] INFO o.i.demo.design.pay.mode.PayCypher - 指纹⽀支付，⻛风

控校验指纹信息

23:05:59.156 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟⽀支付宝渠道⽀支

付⻛风控校验。uId：jlu19dlxo111 tradeId：100000109894 security：true

23:05:59.156 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟⽀支付宝渠道⽀支

付划账成功。uId：jlu19dlxo111 tradeId：100000109894 amount：100

Process finished with exit code 0

1

2

3

4

5

6

7

8

9

10

11

12

13

itstack-demo-design-7-02

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design.pay
 $ #"" channel
 $ $ #"" Pay.java
 $ $ #"" WxPay.java
 $ $!"" ZfbPay.java
 $!"" mode
 $ #"" IPayMode.java

1

2

3

4

5

6

7

8

9

10

11

桥接模式模型结构

左侧 Pay是⼀一个抽象类，往下是它的两个⽀支付类型实现；微信⽀支付、⽀支付宝⽀支付。

右侧 IPayMode是⼀一个接⼝口，往下是它的两个⽀支付模型；刷脸⽀支付、指纹⽀支付。

那么，⽀支付类型 × ⽀支付模型 = 就可以得到相应的组合。
注意，每种⽀支付⽅方式的不不同，刷脸和指纹校验逻辑也有差异，可以使⽤用适配器器模式进⾏行行处理理，这⾥里里
不不是本⽂文重点不不做介绍，可以看适配器器模式章节。

2. 代码实现

2.1 ⽀支付类型桥接抽象类

 $ #"" PayCypher.java
 $ #"" PayFaceMode.java
 $!"" PayFingerprintMode.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

12

13

14

15

16

17

18

在这个类中定义了了⽀支付⽅方式的需要实现的划账接⼝口： transfer，以及桥接接⼝口； IPayMode，并

在构造函数中⽤用户⽅方⾃自⾏行行选择⽀支付⽅方式。
如果没有接触过此类实现，可以重点关注 IPayMode payMode，这部分是桥接的核⼼心。

2.2 两个⽀支付类型的实现

微信⽀支付

⽀支付宝⽀支付

public abstract class Pay {

 protected Logger logger = LoggerFactory.getLogger(Pay.class);

 protected IPayMode payMode;

 public Pay(IPayMode payMode) {

 this.payMode = payMode;

 }

 public abstract String transfer(String uId, String tradeId, BigDecimal

amount);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

public class WxPay extends Pay {

 public WxPay(IPayMode payMode) {

 super(payMode);

 }

 public String transfer(String uId, String tradeId, BigDecimal amount)

{

 logger.info("模拟微信渠道⽀支付划账开始。uId：{} tradeId：{} amount：{}",

uId, tradeId, amount);

 boolean security = payMode.security(uId);

 logger.info("模拟微信渠道⽀支付⻛风控校验。uId：{} tradeId：{} security：

{}", uId, tradeId, security);

 if (!security) {

 logger.info("模拟微信渠道⽀支付划账拦截。uId：{} tradeId：{} amount：

{}", uId, tradeId, amount);

 return "0001";

 }

 logger.info("模拟微信渠道⽀支付划账成功。uId：{} tradeId：{} amount：{}",

uId, tradeId, amount);

 return "0000";

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

这⾥里里分别模拟了了调⽤用第三⽅方的两个⽀支付渠道；微信、⽀支付宝，当然作为⽀支付综合平台可能不不只是接
了了这两个渠道，还会有其很跟多渠道。
另外可以看到在⽀支付的时候分别都调⽤用了了⻛风控的接⼝口进⾏行行验证，也就是不不同模式的⽀支付(刷脸、指
纹)，都需要过指定的⻛风控，才能保证⽀支付安全。

2.3 定义⽀支付模式接⼝口

任何⼀一个⽀支付模式；刷脸、指纹、密码，都会过不不同程度的安全⻛风控，这⾥里里定义⼀一个安全校验接
⼝口。

2.4 三种⽀支付模式⻛风控(刷脸、指纹、密码)

刷脸

public class ZfbPay extends Pay {

 public ZfbPay(IPayMode payMode) {

 super(payMode);

 }

 public String transfer(String uId, String tradeId, BigDecimal amount)

{

 logger.info("模拟⽀支付宝渠道⽀支付划账开始。uId：{} tradeId：{} amount：

{}", uId, tradeId, amount);

 boolean security = payMode.security(uId);

 logger.info("模拟⽀支付宝渠道⽀支付⻛风控校验。uId：{} tradeId：{} security：

{}", uId, tradeId, security);

 if (!security) {

 logger.info("模拟⽀支付宝渠道⽀支付划账拦截。uId：{} tradeId：{}

amount：{}", uId, tradeId, amount);

 return "0001";

 }

 logger.info("模拟⽀支付宝渠道⽀支付划账成功。uId：{} tradeId：{} amount：

{}", uId, tradeId, amount);

 return "0000";

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

public interface IPayMode {

 boolean security(String uId);

}

1

2

3

4

5

指纹

密码

在这⾥里里实现了了三种⽀支付模式(刷脸、指纹、密码)的⻛风控校验，在⽤用户选择不不同⽀支付类型的时候，则
会进⾏行行相应的⻛风控拦截以此保障⽀支付安全。

3. 测试验证

3.1 编写测试类

public class PayFaceMode implements IPayMode{

 protected Logger logger = LoggerFactory.getLogger(PayCypher.class);

 public boolean security(String uId) {

 logger.info("⼈人脸⽀支付，⻛风控校验脸部识别");

 return true;

 }

}

1

2

3

4

5

6

7

8

9

10

public class PayFingerprintMode implements IPayMode{

 protected Logger logger = LoggerFactory.getLogger(PayCypher.class);

 public boolean security(String uId) {

 logger.info("指纹⽀支付，⻛风控校验指纹信息");

 return true;

 }

}

1

2

3

4

5

6

7

8

9

10

public class PayCypher implements IPayMode{

 protected Logger logger = LoggerFactory.getLogger(PayCypher.class);

 public boolean security(String uId) {

 logger.info("密码⽀支付，⻛风控校验环境安全");

 return true;

 }

}

1

2

3

4

5

6

7

8

9

10

与上⾯面的ifelse实现⽅方式相⽐比，这⾥里里的调⽤用⽅方式变得整洁、⼲干净、易易使⽤用； new WxPay(new

PayFaceMode())、 new ZfbPay(new PayFingerprintMode())

外部的使⽤用接⼝口的⽤用户不不需要关⼼心具体的实现，只按需选择使⽤用即可。
⽬目前以上优化主要针对桥接模式的使⽤用进⾏行行重构 if逻辑部分，关于调⽤用部分可以使⽤用抽象⼯工⼚厂或

策略略模式配合map结构，将服务配置化。因为这⾥里里主要展示桥接模式，所以就不不在额外多加代
码，避免喧宾夺主。

3.2 测试结果

从测试结果看内容是⼀一样的，但是整体的实现⽅方式有了了很⼤大的变化。所以有时候不不能只看结果，也
要看看过程

六、总结

@Test

public void test_pay() {

 System.out.println("\r\n模拟测试场景；微信⽀支付、⼈人脸⽅方式。");

 Pay wxPay = new WxPay(new PayFaceMode());

 wxPay.transfer("weixin_1092033111", "100000109893", new

BigDecimal(100));

 System.out.println("\r\n模拟测试场景；⽀支付宝⽀支付、指纹⽅方式。");

 Pay zfbPay = new ZfbPay(new PayFingerprintMode());

 zfbPay.transfer("jlu19dlxo111","100000109894",new BigDecimal(100));

}

1

2

3

4

5

6

7

8

9

10

模拟测试场景；微信⽀支付、⼈人脸⽅方式。

23:14:40.911 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟微信渠道⽀支付

划账开始。uId：weixin_1092033111 tradeId：100000109893 amount：100

23:14:40.914 [main] INFO o.i.demo.design.pay.mode.PayCypher - ⼈人脸⽀支付，⻛风

控校验脸部识别

23:14:40.914 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟微信渠道⽀支付

⻛风控校验。uId：weixin_1092033111 tradeId：100000109893 security：true

23:14:40.915 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟微信渠道⽀支付

划账成功。uId：weixin_1092033111 tradeId：100000109893 amount：100

模拟测试场景；⽀支付宝⽀支付、指纹⽅方式。

23:14:40.915 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟⽀支付宝渠道⽀支

付划账开始。uId：jlu19dlxo111 tradeId：100000109894 amount：100

23:14:40.915 [main] INFO o.i.demo.design.pay.mode.PayCypher - 指纹⽀支付，⻛风

控校验指纹信息

23:14:40.915 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟⽀支付宝渠道⽀支

付⻛风控校验。uId：jlu19dlxo111 tradeId：100000109894 security：true

23:14:40.915 [main] INFO o.i.demo.design.pay.channel.Pay - 模拟⽀支付宝渠道⽀支

付划账成功。uId：jlu19dlxo111 tradeId：100000109894 amount：100

Process finished with exit code 0

1

2

3

4

5

6

7

8

9

10

11

12

13

通过模拟微信与⽀支付宝两个⽀支付渠道在不不同的⽀支付模式下，刷脸、指纹、密码，的组合从⽽而体现

了了桥接模式的在这类场景中的合理理运⽤用。简化了了代码的开发，给后续的需求迭代增加了了很好的扩展
性。
从桥接模式的实现形式来看满⾜足了了单⼀一职责和开闭原则，让每⼀一部分内容都很清晰易易于维护和拓拓
展，但如果我们是实现的⾼高内聚的代码，那么就会很复杂。所以在选择重构代码的时候，需要考虑
好整体的设计，否则选不不到合理理的设计模式，将会让代码变得难以开发。
任何⼀一种设计模式的选择和使⽤用都应该遵顼符合场景为主，不不要刻意使⽤用。⽽而且统⼀一场景因为业务
的复杂从⽽而可能需要使⽤用到多种设计模式的组合，才能将代码设计的更更加合理理。但这种经验需要从
实际的项⽬目中学习经验，并提不不断的运⽤用。

第 3 节：组合模式

⼩小朋友才做选择题，成年年⼈人我都要

⼯工程 描述

itstack-demo-design-8-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-8-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

头⼏几年年只要群⾥里里⼀一问我该学哪个开发语⾔言，哪个语⾔言最好。群⾥里里肯定聊的特别⽕火热，有⼈人⽀支持PHP、有
⼈人喊号Java、也有C++和C#。但这⼏几年年开始好像⼤大家并不不会真的⼑刀枪棍棒、斧钺钩叉般讨论了了，⼤大多数
时候都是开玩笑的闹⼀一闹。于此同时在整体的互联⽹网开发中很多时候是⼀一些开发语⾔言公⽤用的，共同打造
整体的⽣生态圈。⽽而⼤大家选择的⽅方式也是更更偏向于不不同领域下选择适合的架构，⽽而不不是⼀一味地追求某个语
⾔言。这可以给很多初学编程的新⼈人⼀一些提议，不不要刻意的觉得某个语⾔言好，某个语⾔言不不好，只是在适合
的场景下选择最需要的。⽽而你要选择的那个语⾔言可以参考招聘⽹网站的需求量量和薪资⽔水平决定。

编程开发不不是炫技

总会有⼈人喜欢在整体的项⽬目开发中⽤用上点新特性，把⾃自⼰己新学的知识实践试试。不不能说这样就是不不好，
甚⾄至可以说这是⼀一部分很热爱学习的⼈人，喜欢创新，喜欢实践。但编程除了了⽤用上新特性外，还需要考虑
整体的扩展性、可读性、可维护、易易扩展等⽅方⾯面的考虑。就像你家⾥里里雇佣了了⼀一伙装修师傅，有那么⼀一个
⼩小⼯工喜欢炫技搞花活，在家的淋淋浴下 &安装了了⻢马桶 '。

即使是写CRUD也应该有设计模式

往往很多⼤大需求都是通过增删改查堆出来的，今天要⼀一个需求 if⼀一下，明天加个内容 else扩展⼀一下。

⽇日积⽉月累需求也就越来越⼤大，扩展和维护的成本也就越来越⾼高。往往⼤大部分研发是不不具备产品思维和整
体业务需求导向的，总以为写好代码完成功能即可。但这样的不不考虑扩展性的实现，很难让后续的需求
都快速迭代，久⽽而久之就会被陷⼊入恶性循环，每天都有bug要改。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、组合模式介绍

https://bugstack.cn/assets/images/qrcode.png

从上图可以看到这有点像螺丝 (和螺⺟母，通过⼀一堆的链接组织出⼀一棵结构树。⽽而这种通过把相似对象
(也可以称作是⽅方法)组合成⼀一组可被调⽤用的结构树对象的设计思路路叫做组合模式。

这种设计⽅方式可以让你的服务组节点进⾏行行⾃自由组合对外提供服务，例例如你有三个原⼦子校验功能(A：身份
证、 B：银⾏行行卡、 C：⼿手机号)服务并对外提供调⽤用使⽤用。有些调⽤用⽅方需要使⽤用AB组合，有些调⽤用⽅方需要
使⽤用到CBA组合，还有⼀一些可能只使⽤用三者中的⼀一个。那么这个时候你就可以使⽤用组合模式进⾏行行构建服
务，对于不不同类型的调⽤用⽅方配置不不同的组织关系树，⽽而这个树结构你可以配置到数据库中也可以不不断的
通过图形界⾯面来控制树结构。

所以不不同的设计模式⽤用在恰当好处的场景可以让代码逻辑⾮非常清晰并易易于扩展，同时也可以减少团队新
增⼈人员对项⽬目的学习成本。

三、案例例场景模拟

以上是⼀一个⾮非常简化版的营销规则决策树，根据性别、年年龄来发放不不同类型的优惠券，来刺刺激消费起

到精准⽤用户促活的⽬目的。

⽇日
期

需求
紧急程
度

程序员(话外
⾳音)

星
期
⼀一.
早
上

猿哥哥，⽼老老板说要搞⼀一下营销拉拉量量，给男⽣生⼥女女⽣生发不不同的
优惠券，促活消费。

很紧
急，下
班就要

⾏行行吧，也不不
难，加下判
断就上线

星
期
⼆二.
下
午

⼩小哥哥，咱们上线后⾮非常好。要让咱们按照年年轻、中年年、成
年年，不不同年年龄加下判断，准确刺刺激消费。

超紧
急，明
天就要

也不不难，加
就加吧

星
期
三.
晚
上

喂，⼩小哥哥！睡了了吗！⽼老老板说咱们这次活动很成功，可以不不
可以在细分下，把单身、结婚、有娃的都加上不不同判断。这
样更更能刺刺激⽤用户消费。

贼紧
急，最
快上
线。

已经意识
到 ifelse越

来越多了了

星
期
四.
凌
晨

哇！⼩小哥哥你们太棒了了，上的真快。嘻嘻！有个⼩小请求，需
要调整下年年龄段，因为现在学⽣生处对象的都⽐比较早，有对象
的更更容易易买某某某东⻄西。要改下值！⾟辛苦⾟辛苦！

⽼老老板，
在等着
呢！

⼀一⼤大⽚片的值
要修改，
哎！这么
多 ifelse了了

星
期
五.
半
夜

歪歪喂！巴巴，坏了了，怎么发的优惠券不不对了了，有客诉了了，
很多⼥女女⽣生都来投诉。你快看看。⽼老老板，他...

(⼀一头
汗)，
哎，值
粘错位
置了了！

终究还是⼀一
个⼈人扛下了了
所有

虽然⼀一部分⼩小伙伴可能并没有开发过营销场景，但你可能时时刻刻的被营销着。⽐比如你去经常浏览男性
喜欢的机械键盘、笔记本电脑、汽⻋车装饰等等，那么久给你推荐此类的优惠券刺刺激你消费。那么如果你
购物不不多，或者钱不不在⾃自⼰己⼿手⾥里里。那么你是否打过⻋车，有⼀一段时间经常有⼩小伙伴喊，为什什么同样的距离
他就10元，我就15元呢？其实这些都是被营销的案例例，⼀一般对于不不常使⽤用软件的⼩小伙伴，经常会进⾏行行稍
微⼤大⼒力力度的促活，增加⽤用户粘性。

那么在这⾥里里我们就模拟⼀一个类似的决策场景，体现出组合模式在其中起到的重要性。另外，组合模式不不
只是可以运⽤用于规则决策树，还可以做服务包装将不不同的接⼝口进⾏行行组合配置，对外提供服务能⼒力力，减少
开发成本。

四、⽤用⼀一坨坨代码实现

这⾥里里我们举⼀一个关于 ifelse诞⽣生的例例⼦子，介绍⼩小姐姐与程序员 !之间的故事导致的事故。

1. ⼯工程结构

公司⾥里里要都是这样的程序员绝对省下不不少成本，根本不不要搭建微服务，⼀一个⼯工程搞定所有业务！
但千万不不要这么⼲干！酒⾁肉穿肠过，佛祖⼼心中留留。世⼈人若学我，如同进魔道。

2. 代码实现

itstack-demo-design-8-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" EngineController.java

1

2

3

4

5

6

public class EngineController {

 private Logger logger =

LoggerFactory.getLogger(EngineController.class);

 public String process(final String userId, final String userSex, final

int userAge) {

 logger.info("ifelse实现⽅方式判断⽤用户结果。userId：{} userSex：{}

userAge：{}", userId, userSex, userAge);

 if ("man".equals(userSex)) {

 if (userAge < 25) {

 return "果实A";

 }

 if (userAge >= 25) {

 return "果实B";

 }

 }

 if ("woman".equals(userSex)) {

 if (userAge < 25) {

 return "果实C";

 }

 if (userAge >= 25) {

 return "果实D";

 }

 }

 return null;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

除了了我们说的扩展性和每次的维护以外，这样的代码实现起来是最快的。⽽而且从样⼦子来看也很适合
新⼈人理理解。
但是我劝你别写，写这样代码不不是被扣绩效就是被开除。

3. 测试验证

3.1 编写测试类

这⾥里里我们模拟了了⼀一个⽤用户ID，并传输性别：man、年年龄：29，我们的预期结果是：果实B。实际对
应业务就是给头秃的程序员发⼀一张枸杞优惠券。

3.2 测试结果

从测试结果上看我们的程序运⾏行行正常并且符合预期，只不不过实现上并不不是我们推荐的。接下来我们
会采⽤用组合模式来优化这部分代码。

五、组合模式重构代码

接下来使⽤用组合模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

接下来的重构部分代码改动量量相对来说会⽐比较⼤大⼀一些，为了了让我们可以把不不同类型的决策节点和最终的
果实组装成⼀一棵可被运⾏行行的决策树，需要做适配设计和⼯工⼚厂⽅方法调⽤用，具体会体现在定义接⼝口以及抽象
类和初始化配置决策节点(性别、年年龄)上。建议这部分代码多阅读⼏几次，最好实践下。

1. ⼯工程结构

@Test

public void test_EngineController() {

 EngineController engineController = new EngineController();

 String process = engineController.process("Oli09pLkdjh", "man", 29);

 logger.info("测试结果：{}", process);

}

1

2

3

4

5

6

22:10:12.891 [main] INFO o.i.demo.design.EngineController - ifelse实现⽅方式判

断⽤用户结果。userId：Oli09pLkdjh userSex：man userAge：29

22:10:12.898 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：果

实B

Process finished with exit code 0

1

2

3

4

itstack-demo-design-8-02

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design.domain
 $ #"" model
 $ $ #"" aggregates
 $ $ $!"" TreeRich.java
 $ $!"" vo

1

2

3

4

5

6

7

8

9

组合模式模型结构

⾸首先可以看下⿊黑⾊色框框的模拟指导树结构； 1、 11、 12、 111、 112、 121、 122，这是⼀一组

树结构的ID，并由节点串串联组合出⼀一棵关系树树。

接下来是类图部分，左侧是从 LogicFilter开始定义适配的决策过滤器器， BaseLogic是对接⼝口的

实现，提供最基本的通⽤用⽅方法。 UserAgeFilter、 UserGenerFilter，是两个具体的实现类⽤用

于判断年年龄和性别。

最后则是对这颗可以被组织出来的决策树，进⾏行行执⾏行行的引擎。同样定义了了引擎接⼝口和基础的配置，
在配置⾥里里⾯面设定了了需要的模式决策节点。

 $ $ #"" EngineResult.java
 $ $ #"" TreeNode.java
 $ $ #"" TreeNodeLink.java
 $ $!"" TreeRoot.java
 $!"" service
 $ #"" engine
 $ $ #"" impl
 $ $ $!"" TreeEngineHandle.java
 $ $ #"" EngineBase.java
 $ $ #"" EngineConfig.java
 $ $!"" IEngine.java
 $!"" logic
 $ #"" impl
 $ $ #"" LogicFilter.java
 $ $!"" LogicFilter.java
 $!"" LogicFilter.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

包路路径 类 介绍

model.aggregates TreeRich 聚合对象，包含组织树信息

model.vo EngineResult 决策返回对象信息

model.vo TreeNode 树节点；⼦子叶节点、果实节点

model.vo TreeNodeLink 树节点链接链路路

model.vo TreeRoot 树根信息

接下来会对每⼀一个类进⾏行行细致的讲解，如果感觉没有读懂⼀一定是我作者的表述不不够清晰，可以添加
我的微信(fustack)与我交流。

2. 代码实现

2.1 基础对象

以上这部分简单介绍，不不包含逻辑只是各项必要属性的 get/set，整个源代码可以通过关注微信

公众号： bugstack⾍虫洞洞栈，回复源码下载打开链接获取。

2.2 树节点逻辑过滤器器接⼝口

static {

 logicFilterMap = new ConcurrentHashMap<>();

 logicFilterMap.put("userAge", new UserAgeFilter());

 logicFilterMap.put("userGender", new UserGenderFilter());

}

1

2

3

4

5

public interface LogicFilter {

 /**

 * 逻辑决策器器

 *

 * @param matterValue 决策值

 * @param treeNodeLineInfoList 决策节点

 * @return 下⼀一个节点Id

 */

 Long filter(String matterValue, List<TreeNodeLink>

treeNodeLineInfoList);

 /**

 * 获取决策值

 *

 * @param decisionMatter 决策物料料

 * @return 决策值

 */

 String matterValue(Long treeId, String userId, Map<String, String>

decisionMatter);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

这⼀一部分定义了了适配的通⽤用接⼝口，逻辑决策器器、获取决策值，让每⼀一个提供决策能⼒力力的节点都必须
实现此接⼝口，保证统⼀一性。

2.3 决策抽象类提供基础服务

在抽象⽅方法中实现了了接⼝口⽅方法，同时定义了了基本的决策⽅方法； 1、2、3、4、5，等于、⼩小于、⼤大

}

19

20

public abstract class BaseLogic implements LogicFilter {

 @Override

 public Long filter(String matterValue, List<TreeNodeLink>

treeNodeLinkList) {

 for (TreeNodeLink nodeLine : treeNodeLinkList) {

 if (decisionLogic(matterValue, nodeLine)) return

nodeLine.getNodeIdTo();

 }

 return 0L;

 }

 @Override

 public abstract String matterValue(Long treeId, String userId,

Map<String, String> decisionMatter);

 private boolean decisionLogic(String matterValue, TreeNodeLink

nodeLink) {

 switch (nodeLink.getRuleLimitType()) {

 case 1:

 return matterValue.equals(nodeLink.getRuleLimitValue());

 case 2:

 return Double.parseDouble(matterValue) >

Double.parseDouble(nodeLink.getRuleLimitValue());

 case 3:

 return Double.parseDouble(matterValue) <

Double.parseDouble(nodeLink.getRuleLimitValue());

 case 4:

 return Double.parseDouble(matterValue) <=

Double.parseDouble(nodeLink.getRuleLimitValue());

 case 5:

 return Double.parseDouble(matterValue) >=

Double.parseDouble(nodeLink.getRuleLimitValue());

 default:

 return false;

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

于、⼩小于等于、⼤大于等于的判断逻辑。

同时定义了了抽象⽅方法，让每⼀一个实现接⼝口的类都必须按照规则提供决策值，这个决策值⽤用于做逻

辑⽐比对。

2.4 树节点逻辑实现类

年年龄节点

性别节点

以上两个决策逻辑的节点获取值的⽅方式都⾮非常简单，只是获取⽤用户的⼊入参即可。实际的业务开发可
以从数据库、RPC接⼝口、缓存运算等各种⽅方式获取。

2.5 决策引擎接⼝口定义

对于使⽤用⽅方来说也同样需要定义统⼀一的接⼝口操作，这样的好处⾮非常⽅方便便后续拓拓展出不不同类型的决策
引擎，也就是可以建造不不同的决策⼯工⼚厂。

2.6 决策节点配置

public class UserAgeFilter extends BaseLogic {

 @Override

 public String matterValue(Long treeId, String userId, Map<String,

String> decisionMatter) {

 return decisionMatter.get("age");

 }

}

1

2

3

4

5

6

7

8

public class UserGenderFilter extends BaseLogic {

 @Override

 public String matterValue(Long treeId, String userId, Map<String,

String> decisionMatter) {

 return decisionMatter.get("gender");

 }

}

1

2

3

4

5

6

7

8

public interface IEngine {

 EngineResult process(final Long treeId, final String userId, TreeRich

treeRich, final Map<String, String> decisionMatter);

}

1

2

3

4

5

public class EngineConfig {1

2

在这⾥里里将可提供服务的决策节点配置到 map结构中，对于这样的 map结构可以抽取到数据库中，

那么就可以⾮非常⽅方便便的管理理。

2.7 基础决策引擎功能

 static Map<String, LogicFilter> logicFilterMap;

 static {

 logicFilterMap = new ConcurrentHashMap<>();

 logicFilterMap.put("userAge", new UserAgeFilter());

 logicFilterMap.put("userGender", new UserGenderFilter());

 }

 public Map<String, LogicFilter> getLogicFilterMap() {

 return logicFilterMap;

 }

 public void setLogicFilterMap(Map<String, LogicFilter> logicFilterMap)

{

 this.logicFilterMap = logicFilterMap;

 }

}

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

public abstract class EngineBase extends EngineConfig implements IEngine {

 private Logger logger = LoggerFactory.getLogger(EngineBase.class);

 @Override

 public abstract EngineResult process(Long treeId, String userId,

TreeRich treeRich, Map<String, String> decisionMatter);

 protected TreeNode engineDecisionMaker(TreeRich treeRich, Long treeId,

String userId, Map<String, String> decisionMatter) {

 TreeRoot treeRoot = treeRich.getTreeRoot();

 Map<Long, TreeNode> treeNodeMap = treeRich.getTreeNodeMap();

 // 规则树根ID

 Long rootNodeId = treeRoot.getTreeRootNodeId();

 TreeNode treeNodeInfo = treeNodeMap.get(rootNodeId);

 //节点类型[NodeType]；1⼦子叶、2果实

 while (treeNodeInfo.getNodeType().equals(1)) {

 String ruleKey = treeNodeInfo.getRuleKey();

 LogicFilter logicFilter = logicFilterMap.get(ruleKey);

 String matterValue = logicFilter.matterValue(treeId, userId,

decisionMatter);

 Long nextNode = logicFilter.filter(matterValue,

treeNodeInfo.getTreeNodeLinkList());

 treeNodeInfo = treeNodeMap.get(nextNode);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

这⾥里里主要提供决策树流程的处理理过程，有点像通过链路路的关系(性别、年年龄)在⼆二叉树中寻找果实
节点的过程。
同时提供⼀一个抽象⽅方法，执⾏行行决策流程的⽅方法供外部去做具体的实现。

2.8 决策引擎的实现

这⾥里里对于决策引擎的实现就⾮非常简单了了，通过传递进来的必要信息；决策树信息、决策物料料值，来
做具体的树形结构决策。

3. 测试验证

3.1 组装树关系

 logger.info("决策树引擎=>{} userId：{} treeId：{} treeNode：{}

ruleKey：{} matterValue：{}", treeRoot.getTreeName(), userId, treeId,

treeNodeInfo.getTreeNodeId(), ruleKey, matterValue);

 }

 return treeNodeInfo;

 }

}

21

22

23

24

25

26

public class TreeEngineHandle extends EngineBase {

 @Override

 public EngineResult process(Long treeId, String userId, TreeRich

treeRich, Map<String, String> decisionMatter) {

 // 决策流程

 TreeNode treeNode = engineDecisionMaker(treeRich, treeId, userId,

decisionMatter);

 // 决策结果

 return new EngineResult(userId, treeId, treeNode.getTreeNodeId(),

treeNode.getNodeValue());

 }

}

1

2

3

4

5

6

7

8

9

10

11

@Before

public void init() {

 // 节点：1

 TreeNode treeNode_01 = new TreeNode();

 treeNode_01.setTreeId(10001L);

 treeNode_01.setTreeNodeId(1L);

 treeNode_01.setNodeType(1);

 treeNode_01.setNodeValue(null);

 treeNode_01.setRuleKey("userGender");

 treeNode_01.setRuleDesc("⽤用户性别[男/⼥女女]");

 // 链接：1->11

 TreeNodeLink treeNodeLink_11 = new TreeNodeLink();

1

2

3

4

5

6

7

8

9

10

11

12

 treeNodeLink_11.setNodeIdFrom(1L);

 treeNodeLink_11.setNodeIdTo(11L);

 treeNodeLink_11.setRuleLimitType(1);

 treeNodeLink_11.setRuleLimitValue("man");

 // 链接：1->12

 TreeNodeLink treeNodeLink_12 = new TreeNodeLink();

 treeNodeLink_12.setNodeIdTo(1L);

 treeNodeLink_12.setNodeIdTo(12L);

 treeNodeLink_12.setRuleLimitType(1);

 treeNodeLink_12.setRuleLimitValue("woman");

 List<TreeNodeLink> treeNodeLinkList_1 = new ArrayList<>();

 treeNodeLinkList_1.add(treeNodeLink_11);

 treeNodeLinkList_1.add(treeNodeLink_12);

 treeNode_01.setTreeNodeLinkList(treeNodeLinkList_1);

 // 节点：11

 TreeNode treeNode_11 = new TreeNode();

 treeNode_11.setTreeId(10001L);

 treeNode_11.setTreeNodeId(11L);

 treeNode_11.setNodeType(1);

 treeNode_11.setNodeValue(null);

 treeNode_11.setRuleKey("userAge");

 treeNode_11.setRuleDesc("⽤用户年年龄");

 // 链接：11->111

 TreeNodeLink treeNodeLink_111 = new TreeNodeLink();

 treeNodeLink_111.setNodeIdFrom(11L);

 treeNodeLink_111.setNodeIdTo(111L);

 treeNodeLink_111.setRuleLimitType(3);

 treeNodeLink_111.setRuleLimitValue("25");

 // 链接：11->112

 TreeNodeLink treeNodeLink_112 = new TreeNodeLink();

 treeNodeLink_112.setNodeIdFrom(11L);

 treeNodeLink_112.setNodeIdTo(112L);

 treeNodeLink_112.setRuleLimitType(5);

 treeNodeLink_112.setRuleLimitValue("25");

 List<TreeNodeLink> treeNodeLinkList_11 = new ArrayList<>();

 treeNodeLinkList_11.add(treeNodeLink_111);

 treeNodeLinkList_11.add(treeNodeLink_112);

 treeNode_11.setTreeNodeLinkList(treeNodeLinkList_11);

 // 节点：12

 TreeNode treeNode_12 = new TreeNode();

 treeNode_12.setTreeId(10001L);

 treeNode_12.setTreeNodeId(12L);

 treeNode_12.setNodeType(1);

 treeNode_12.setNodeValue(null);

 treeNode_12.setRuleKey("userAge");

 treeNode_12.setRuleDesc("⽤用户年年龄");

 // 链接：12->121

 TreeNodeLink treeNodeLink_121 = new TreeNodeLink();

 treeNodeLink_121.setNodeIdFrom(12L);

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

 treeNodeLink_121.setNodeIdTo(121L);

 treeNodeLink_121.setRuleLimitType(3);

 treeNodeLink_121.setRuleLimitValue("25");

 // 链接：12->122

 TreeNodeLink treeNodeLink_122 = new TreeNodeLink();

 treeNodeLink_122.setNodeIdFrom(12L);

 treeNodeLink_122.setNodeIdTo(122L);

 treeNodeLink_122.setRuleLimitType(5);

 treeNodeLink_122.setRuleLimitValue("25");

 List<TreeNodeLink> treeNodeLinkList_12 = new ArrayList<>();

 treeNodeLinkList_12.add(treeNodeLink_121);

 treeNodeLinkList_12.add(treeNodeLink_122);

 treeNode_12.setTreeNodeLinkList(treeNodeLinkList_12);

 // 节点：111

 TreeNode treeNode_111 = new TreeNode();

 treeNode_111.setTreeId(10001L);

 treeNode_111.setTreeNodeId(111L);

 treeNode_111.setNodeType(2);

 treeNode_111.setNodeValue("果实A");

 // 节点：112

 TreeNode treeNode_112 = new TreeNode();

 treeNode_112.setTreeId(10001L);

 treeNode_112.setTreeNodeId(112L);

 treeNode_112.setNodeType(2);

 treeNode_112.setNodeValue("果实B");

 // 节点：121

 TreeNode treeNode_121 = new TreeNode();

 treeNode_121.setTreeId(10001L);

 treeNode_121.setTreeNodeId(121L);

 treeNode_121.setNodeType(2);

 treeNode_121.setNodeValue("果实C");

 // 节点：122

 TreeNode treeNode_122 = new TreeNode();

 treeNode_122.setTreeId(10001L);

 treeNode_122.setTreeNodeId(122L);

 treeNode_122.setNodeType(2);

 treeNode_122.setNodeValue("果实D");

 // 树根

 TreeRoot treeRoot = new TreeRoot();

 treeRoot.setTreeId(10001L);

 treeRoot.setTreeRootNodeId(1L);

 treeRoot.setTreeName("规则决策树");

 Map<Long, TreeNode> treeNodeMap = new HashMap<>();

 treeNodeMap.put(1L, treeNode_01);

 treeNodeMap.put(11L, treeNode_11);

 treeNodeMap.put(12L, treeNode_12);

 treeNodeMap.put(111L, treeNode_111);

 treeNodeMap.put(112L, treeNode_112);

 treeNodeMap.put(121L, treeNode_121);

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

重要，这⼀一部分是组合模式⾮非常重要的使⽤用，在我们已经建造好的决策树关系下，可以创建出树的
各个节点，以及对节点间使⽤用链路路进⾏行行串串联。
及时后续你需要做任何业务的扩展都可以在⾥里里⾯面添加相应的节点，并做动态化的配置。
关于这部分⼿手动组合的⽅方式可以提取到数据库中，那么也就可以扩展到图形界⾯面的进⾏行行配置操作。

3.2 编写测试类

 treeNodeMap.put(122L, treeNode_122);

 treeRich = new TreeRich(treeRoot, treeNodeMap);

}

111

112

113

在这⾥里里提供了了调⽤用的通过组织模式创建出来的流程决策树，调⽤用的时候传⼊入了了决策树的ID，那么如
果是业务开发中就可以⽅方便便的解耦决策树与业务的绑定关系，按需传⼊入决策树ID即可。
此外⼊入参我们还提供了了需要处理理；男 (man)、年年龄 (29岁)，的参数信息。

3.3 测试结果

从测试结果上看这与我们使⽤用 ifelse是⼀一样的，但是⽬目前这与的组合模式设计下，就⾮非常⽅方便便后

续的拓拓展和修改。
整体的组织关系框架以及调⽤用决策流程已经搭建完成，如果阅读到此没有完全理理解，可以下载代码
观察结构并运⾏行行调试。

六、总结

从以上的决策树场景来看，组合模式的主要解决的是⼀一系列列简单逻辑节点或者扩展的复杂逻辑节点
在不不同结构的组织下，对于外部的调⽤用是仍然可以⾮非常简单的。
这部分设计模式保证了了开闭原则，⽆无需更更改模型结构你就可以提供新的逻辑节点的使⽤用并配合组织
出新的关系树。但如果是⼀一些功能差异化⾮非常⼤大的接⼝口进⾏行行包装就会变得⽐比较困难，但也不不是不不能
很好的处理理，只不不过需要做⼀一些适配和特定化的开发。
很多时候因为你的极致追求和稍有倔强的⼯工匠精神，即使在⾯面对同样的业务需求，你能完成出最好
的代码结构和最易易于扩展的技术架构。不不要被远不不能给你指导提升能⼒力力的影响到放弃⾃自⼰己的追求！

@Test

public void test_tree() {

 logger.info("决策树组合结构信息：\r\n" + JSON.toJSONString(treeRich));

 IEngine treeEngineHandle = new TreeEngineHandle();

 Map<String, String> decisionMatter = new HashMap<>();

 decisionMatter.put("gender", "man");

 decisionMatter.put("age", "29");

 EngineResult result = treeEngineHandle.process(10001L, "Oli09pLkdjh",

treeRich, decisionMatter);

 logger.info("测试结果：{}", JSON.toJSONString(result));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

23:35:05.711 [main] INFO o.i.d.d.d.service.engine.EngineBase - 决策树引擎=>

规则决策树 userId：Oli09pLkdjh treeId：10001 treeNode：11 ruleKey：userGender

matterValue：man

23:35:05.712 [main] INFO o.i.d.d.d.service.engine.EngineBase - 决策树引擎=>

规则决策树 userId：Oli09pLkdjh treeId：10001 treeNode：112 ruleKey：userAge

matterValue：29

23:35:05.715 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结

果：{"nodeId":112,"nodeValue":"果实

B","success":true,"treeId":10001,"userId":"Oli09pLkdjh"}

Process finished with exit code 0

1

2

3

4

5

⼯工程 描述

itstack-demo-design-9-00 场景模拟⼯工程；模拟单点登录类

itstack-demo-design-9-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-9-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

第 4 节：装饰器器模式

对于代码你有编程感觉吗

很多⼈人写代码往往是没有编程感觉的，也就是除了了可以把功能按照固定的流程编写出流⽔水式的代码外，
很难去思考整套功能服务的扩展性和可维护性。尤其是在⼀一些较⼤大型的功能搭建上，⽐比较缺失⼀一些驾驭
能⼒力力，从⽽而导致最终的代码相对来说不不能做到尽善尽美。

江洋⼤大盗与江洋⼤大偷

两个本想描述⼀一样的意思的词，只因⼀一字只差就让⼈人觉得⼀一个是好⽜牛，⼀一个好搞笑。往往我们去开发编
程写代码时也经常将⼀一些不不恰当的⽤用法⽤用于业务需求实现中，但却不不能意识到。⼀一⽅方⾯面是由于编码不不多
缺少较⼤大型项⽬目的实践，另⼀一⽅方⾯面是不不思进取的总在以完成需求为⽬目标缺少精益求精的⼯工匠精神。

书从来不不是看的⽽而是⽤用的

在这个学习资料料⼏几乎爆炸的时代，甚⾄至你可以轻易易就获取⼏几个T的视频，⼩小⼿手轻轻⼀一点就收藏⼀一堆⽂文
章，但却很少去看。学习的过程从不不只是简单的看⼀一遍就可以，对于⼀一些实操性的技术书籍，如果真的
希望学习到知识，那么⼀一定是把这本书⽤用起来⽽而绝对不不是看起来。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、装饰器器模式介绍

https://bugstack.cn/assets/images/qrcode.png

初看上图感觉装饰器器模式有点像俄罗斯套娃、某众汽⻋车)，⽽而装饰器器的核⼼心就是再不不改原有类的基础上
给类新增功能。不不改变原有类，可能有的⼩小伙伴会想到继承、AOP切⾯面，当然这些⽅方式都可以实现，但
是使⽤用装饰器器模式会是另外⼀一种思路路更更为灵活，可以避免继承导致的⼦子类过多，也可以避免AOP带来的
复杂性。

你熟悉的场景很多⽤用到装饰器器模式

new BufferedReader(new FileReader(""));，这段代码你是否熟悉，相信学习java开发到字节
流、字符流、⽂文件流的内容时都⻅见到了了这样的代码，⼀一层嵌套⼀一层，⼀一层嵌套⼀一层，字节流转字符流等
等，⽽而这样⽅方式的使⽤用就是装饰器器模式的⼀一种体现。

三、案例例场景模拟

在本案例例中我们模拟⼀一个单点登录功能扩充的场景

⼀一般在业务开发的初期，往往内部的ERP使⽤用只需要判断账户验证即可，验证通过后即可访问ERP的所
有资源。但随着业务的不不断发展，团队⾥里里开始出现专⻔门的运营⼈人员、营销⼈人员、数据⼈人员，每个⼈人员对
于ERP的使⽤用需求不不同，有些需要创建活动，有些只是查看数据。同时为了了保证数据的安全性，不不会让
每个⽤用户都有最⾼高的权限。

那么以往使⽤用的 SSO是⼀一个组件化通⽤用的服务，不不能在⾥里里⾯面添加需要的⽤用户访问验证功能。这个时候我

们就可以使⽤用装饰器器模式，扩充原有的单点登录服务。但同时也保证原有功能不不受破坏，可以继续使
⽤用。

1. 场景模拟⼯工程

这⾥里里模拟的是spring中的类： HandlerInterceptor，实现接⼝口功能 SsoInterceptor模拟的单

点登录拦截服务。
为了了避免引⼊入太多spring的内容影响对设计模式的阅读，这⾥里里使⽤用了了同名的类和⽅方法，尽可能减少
外部的依赖。

2. 场景简述

2.1 模拟Spring的HandlerInterceptor

实际的单点登录开发会基于； org.springframework.web.servlet.HandlerInterceptor 实
现。

2.2 模拟单点登录功能

这⾥里里的模拟实现⾮非常简单只是截取字符串串，实际使⽤用需要从 HttpServletRequest request对象

中获取 cookie信息，解析 ticket值做校验。

在返回的⾥里里⾯面也⾮非常简单，只要获取到了了 success就认为是允许登录。

四、⽤用⼀一坨坨代码实现

此场景⼤大多数实现的⽅方式都会采⽤用继承类

itstack-demo-design-9-00

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" HandlerInterceptor.java
 !"" SsoInterceptor.java

1

2

3

4

5

6

7

public interface HandlerInterceptor {

 boolean preHandle(String request, String response, Object handler);

}

1

2

3

4

5

public class SsoInterceptor implements HandlerInterceptor{

 public boolean preHandle(String request, String response, Object

handler) {

 // 模拟获取cookie

 String ticket = request.substring(1, 8);

 // 模拟校验

 return ticket.equals("success");

 }

}

1

2

3

4

5

6

7

8

9

10

继承类的实现⽅方式也是⼀一个⽐比较通⽤用的⽅方式，通过继承后重写⽅方法，并发将⾃自⼰己的逻辑覆盖进去。如果
是⼀一些简单的场景且不不需要不不断维护和扩展的，此类实现并不不会有什什么，也不不会导致⼦子类过多。

1. ⼯工程结构

以上⼯工程结构⾮非常简单，只是通过 LoginSsoDecorator 继承 SsoInterceptor，重写⽅方法功
能。

2. 代码实现

以上这部分通过继承重写⽅方法，将个⼈人可访问哪些⽅方法的功能添加到⽅方法中。
以上看着代码还算⽐比较清晰，但如果是⽐比较复杂的业务流程代码，就会很混乱。

itstack-demo-design-9-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" LoginSsoDecorator.java

1

2

3

4

5

6

public class LoginSsoDecorator extends SsoInterceptor {

 private static Map<String, String> authMap = new

ConcurrentHashMap<String, String>();

 static {

 authMap.put("huahua", "queryUserInfo");

 authMap.put("doudou", "queryUserInfo");

 }

 @Override

 public boolean preHandle(String request, String response, Object

handler) {

 // 模拟获取cookie

 String ticket = request.substring(1, 8);

 // 模拟校验

 boolean success = ticket.equals("success");

 if (!success) return false;

 String userId = request.substring(9);

 String method = authMap.get(userId);

 // 模拟⽅方法校验

 return "queryUserInfo".equals(method);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

3. 测试验证

3.1 编写测试类

这⾥里里模拟的相当于登录过程中的校验操作，判断⽤用户是否可登录以及是否可访问⽅方法。

3.2 测试结果

从测试结果来看满⾜足我们的预期，已经做了了拦截。如果你在学习的过程中，可以尝试模拟单点登录
并继承扩展功能。

五、装饰器器模式重构代码

接下来使⽤用装饰器器模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

装饰器器主要解决的是直接继承下因功能的不不断横向扩展导致⼦子类膨胀的问题，⽽而是⽤用装饰器器模式后就会
⽐比直接继承显得更更加灵活同时这样也就不不再需要考虑⼦子类的维护。

在装饰器器模式中有四个⽐比较重要点抽象出来的点；

1. 抽象构件⻆角⾊色(Component) - 定义抽象接⼝口
2. 具体构件⻆角⾊色(ConcreteComponent) - 实现抽象接⼝口，可以是⼀一组
3. 装饰⻆角⾊色(Decorator) - 定义抽象类并继承接⼝口中的⽅方法，保证⼀一致性
4. 具体装饰⻆角⾊色(ConcreteDecorator) - 扩展装饰具体的实现逻辑

通过以上这四项来实现装饰器器模式，主要核⼼心内容会体现在抽象类的定义和实现上。

1. ⼯工程结构

@Test

public void test_LoginSsoDecorator() {

 LoginSsoDecorator ssoDecorator = new LoginSsoDecorator();

 String request = "1successhuahua";

 boolean success = ssoDecorator.preHandle(request, "ewcdqwt40liuiu",

"t");

 System.out.println("登录校验：" + request + (success ? " 放⾏行行" : " 拦

截"));

}

1

2

3

4

5

6

7

登录校验：1successhuahua 拦截

Process finished with exit code 0

1

2

3

itstack-demo-design-9-02

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" LoginSsoDecorator.java
 !"" SsoDecorator.java

1

2

3

4

5

6

7

装饰器器模式模型结构

以上是⼀一个装饰器器实现的类图结构，重点的类是 SsoDecorator，这个类是⼀一个抽象类主要完成

了了对接⼝口 HandlerInterceptor继承。

当装饰⻆角⾊色继承接⼝口后会提供构造函数，⼊入参就是继承的接⼝口实现类即可，这样就可以很⽅方便便的扩
展出不不同功能组件。

2. 代码实现

2.1 抽象类装饰⻆角⾊色

在装饰类中有两个重点的地⽅方是；1)继承了了处理理接⼝口、2)提供了了构造函数、3)覆盖了了⽅方法
preHandle。

以上三个点是装饰器器模式的核⼼心处理理部分，这样可以踢掉对⼦子类继承的⽅方式实现逻辑功能扩展。

public abstract class SsoDecorator implements HandlerInterceptor {

 private HandlerInterceptor handlerInterceptor;

 private SsoDecorator(){}

 public SsoDecorator(HandlerInterceptor handlerInterceptor) {

 this.handlerInterceptor = handlerInterceptor;

 }

 public boolean preHandle(String request, String response, Object

handler) {

 return handlerInterceptor.preHandle(request, response, handler);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2.2 装饰⻆角⾊色逻辑实现

在具体的装饰类实现中，继承了了装饰类 SsoDecorator，那么现在就可以扩展⽅方法； preHandle

在 preHandle的实现中可以看到，这⾥里里只关⼼心扩展部分的功能，同时不不会影响原有类的核⼼心服

务，也不不会因为使⽤用继承⽅方式⽽而导致的多余⼦子类，增加了了整体的灵活性。

3. 测试验证

3.1 编写测试类

public class LoginSsoDecorator extends SsoDecorator {

 private Logger logger =

LoggerFactory.getLogger(LoginSsoDecorator.class);

 private static Map<String, String> authMap = new

ConcurrentHashMap<String, String>();

 static {

 authMap.put("huahua", "queryUserInfo");

 authMap.put("doudou", "queryUserInfo");

 }

 public LoginSsoDecorator(HandlerInterceptor handlerInterceptor) {

 super(handlerInterceptor);

 }

 @Override

 public boolean preHandle(String request, String response, Object

handler) {

 boolean success = super.preHandle(request, response, handler);

 if (!success) return false;

 String userId = request.substring(8);

 String method = authMap.get(userId);

 logger.info("模拟单点登录⽅方法访问拦截校验：{} {}", userId, method);

 // 模拟⽅方法校验

 return "queryUserInfo".equals(method);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

这⾥里里测试了了对装饰器器模式的使⽤用，通过透传原有单点登录类 new SsoInterceptor()，传递给装

饰器器，让装饰器器可以执⾏行行扩充的功能。
同时对于传递者和装饰器器都可以是多组的，在⼀一些实际的业务开发中，往往也是由于太多类型的⼦子
类实现⽽而导致不不易易于维护，从⽽而使⽤用装饰器器模式替代。

3.2 测试结果

结果符合预期，扩展了了对⽅方法拦截的校验性。
如果你在学习的过程中有⽤用到过单点登陆，那么可以适当在⾥里里⾯面进⾏行行扩展装饰器器模式进⾏行行学习使
⽤用。
另外，还有⼀一种场景也可以使⽤用装饰器器。例例如；你之前使⽤用某个实现某个接⼝口接收单个消息，但由
于外部的升级变为发送 list集合消息，但你⼜又不不希望所有的代码类都去修改这部分逻辑。那么可

以使⽤用装饰器器模式进⾏行行适配 list集合，给使⽤用者依然是 for循环后的单个消息。

六、总结

使⽤用装饰器器模式满⾜足单⼀一职责原则，你可以在⾃自⼰己的装饰类中完成功能逻辑的扩展，⽽而不不影响主
类，同时可以按需在运⾏行行时添加和删除这部分逻辑。另外装饰器器模式与继承⽗父类重写⽅方法，在某些
时候需要按需选择，并不不⼀一定某⼀一个就是最好。
装饰器器实现的重点是对抽象类继承接⼝口⽅方式的使⽤用，同时设定被继承的接⼝口可以通过构造函数传递
其实现类，由此增加扩展性并重写⽅方法⾥里里可以实现此部分⽗父类实现的功能。
就像夏天热你穿短裤，冬天冷你穿棉裤，⾬雨天挨浇你穿⾬雨⾐衣⼀一样，你的根本本身没有被改变，⽽而你
的需求却被不不同的装饰⽽而实现。⽣生活中往往⽐比⽐比皆是设计，当你可以融合这部分活灵活现的例例⼦子到
代码实现中，往往会创造出更更加优雅的实现⽅方式。

@Test

public void test_LoginSsoDecorator() {

 LoginSsoDecorator ssoDecorator = new LoginSsoDecorator(new

SsoInterceptor());

 String request = "1successhuahua";

 boolean success = ssoDecorator.preHandle(request, "ewcdqwt40liuiu",

"t");

 System.out.println("登录校验：" + request + (success ? " 放⾏行行" : " 拦

截"));

}

1

2

3

4

5

6

7

23:50:50.796 [main] INFO o.i.demo.design.LoginSsoDecorator - 模拟单点登录⽅方法

访问拦截校验：huahua queryUserInfo

登录校验：1successhuahua 放⾏行行

Process finished with exit code 0

1

2

3

4

⼯工程 描述

itstack-demo-design-10-00 场景模拟⼯工程；模拟⼀一个提供接⼝口服务的SpringBoot⼯工程

itstack-demo-design-10-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-10-02 通过设计模式开发为中间件，包装通⽤用型核⼼心逻辑

第 5 节：外观模式

你感受到的容易易，⼀一定有⼈人为你承担不不容易易

这句句话更更像是描述⽣生活的，许许多多的磕磕绊绊总有⼈人为你提供躲⾬雨的屋檐和避⻛风的港湾。其实编程开
发的团队中也⼀一样有⼈人只负责CRUD中的简单调⽤用，去使⽤用团队中⾼高级程序员开发出来的核⼼心服务和接
⼝口。这样的编程开发对于初期刚进⼊入程序员⾏行行业的⼩小伙伴来说锻炼锻炼还是不不错的，但随着开发的⽇日⼦子
越来越久⼀一直做这样的事情就很难得到成⻓长，也想努⼒力力的去做⼀一些更更有难度的承担，以此来增强个⼈人的
技术能⼒力力。

没有最好的编程语⾔言，语⾔言只是⼯工具

⼑刀枪棍棒、斧钺钩叉、包⼦子油条、盒⼦子麻花，是语⾔言。五郎⼋八卦棍、⼗十⼆二路路弹腿、洪家铁线拳，是设
计。记得叶问⾥里里有⼀一句句台词是：⾦金金⼭山找：今天我北北⽅方拳术，输给你南⽅方拳术了了。叶问：你错了了，不不是南北北拳

的问题，是你的问题。所以当你编程开发写的久了了，就不不会再特别在意⽤用的语⾔言，⽽而是为⽬目标服务，⽤用

最好的设计能⼒力力也就是编程的智慧做出做最完美的服务。这也就是编程⼈人员的价值所在！

设计与反设计以及过渡设计

设计模式是解决程序中不不合理理、不不易易于扩展、不不易易于维护的问题，也是⼲干掉⼤大部分 ifelse的利利器器，在

我们常⽤用的框架中基本都会⽤用到⼤大量量的设计模式来构建组件，这样也能⽅方便便框架的升级和功能的扩展。
但！如果不不能合理理的设计以及乱⽤用设计模式，会导致整个编程变得更更加复杂难维护，也就是我们常说
的；反设计、过渡设计。⽽而这部分设计能⼒力力也是从实践的项⽬目中获取的经验，不不断的改造优化摸索出的

最合理理的⽅方式，应对当前的服务体量量。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. SpringBoot 2.1.2.RELEASE
4. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、外观模式介绍

https://bugstack.cn/assets/images/qrcode.png

外观模式也叫⻔门⾯面模式，主要解决的是降低调⽤用⽅方的使⽤用接⼝口的复杂逻辑组合。这样调⽤用⽅方与实际的接
⼝口提供⽅方提供⽅方提供了了⼀一个中间层，⽤用于包装逻辑提供API接⼝口。有些时候外观模式也被⽤用在中间件
层，对服务中的通⽤用性复杂逻辑进⾏行行中间件层包装，让使⽤用⽅方可以只关⼼心业务开发。

那么这样的模式在我们的所⻅见产品功能中也经常遇到，就像⼏几年年前我们注册⼀一个⽹网站时候往往要添加很
多信息，包括；姓名、昵称、⼿手机号、QQ、邮箱、住址、单身等等，但现在注册成为⼀一个⽹网站的⽤用户
只需要⼀一步即可，⽆无论是⼿手机号还是微信也都提供了了这样的登录服务。⽽而对于服务端应⽤用开发来说以前
是提供了了⼀一个整套的接⼝口，现在注册的时候并没有这些信息，那么服务端就需要进⾏行行接⼝口包装，在前端
调⽤用注册的时候服务端获取相应的⽤用户信息(从各个渠道)，如果获取不不到会让⽤用户后续进⾏行行补全(营销补
全信息给奖励)，以此来拉动⽤用户的注册量量和活跃度。

三、案例例场景模拟

在本案例例中我们模拟⼀一个将所有服务接⼝口添加⽩白名单的场景

在项⽬目不不断壮⼤大发展的路路上，每⼀一次发版上线都需要进⾏行行测试，⽽而这部分测试验证⼀一般会进⾏行行⽩白名单开
量量或者切量量的⽅方式进⾏行行验证。那么如果在每⼀一个接⼝口中都添加这样的逻辑，就会⾮非常麻烦且不不易易维护。
另外这是⼀一类具备通⽤用逻辑的共性需求，⾮非常适合开发成组件，以此来治理理服务，让研发⼈人员更更多的关
⼼心业务功能开发。

⼀一般情况下对于外观模式的使⽤用通常是⽤用在复杂或多个接⼝口进⾏行行包装统⼀一对外提供服务上，此种使⽤用⽅方
式也相对简单在我们平常的业务开发中也是最常⽤用的。你可能经常听到把这两个接⼝口包装⼀一下，但在本
例例⼦子中我们把这种设计思路路放到中间件层，让服务变得可以统⼀一控制。

1. 场景模拟⼯工程

itstack-demo-design-10-00

!"" src
 #"" main
 $ #"" java
 $ $!"" org.itstack.demo.design
 $ $ #"" domain
 $ $ $!"" UserInfo.java
 $ $ #"" web
 $ $ $!"" HelloWorldController.java
 $ $!"" HelloWorldApplication.java
 $!"" resources
 $!"" application.yml
 !"" test
 !"" java
 !"" org.itstack.demo.test

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

这是⼀一个 SpringBoot的 HelloWorld⼯工程，在⼯工程中提供了了查询⽤用户信息的接⼝口

HelloWorldController.queryUserInfo，为后续扩展此接⼝口的⽩白名单过滤做准备。

2. 场景简述

2.1 定义基础查询接⼝口

这⾥里里提供了了⼀一个基本的查询服务，通过⼊入参 userId，查询⽤用户信息。后续就需要在这⾥里里扩展⽩白名

单，只有指定⽤用户才可以查询，其他⽤用户不不能查询。

2.2 设置Application启动类

这⾥里里是通⽤用的 SpringBoot启动类。需要添加的是⼀一个配置注解 @Configuration，为了了后续可

以读取⽩白名单配置。

 !"" ApiTest.java16

@RestController

public class HelloWorldController {

 @Value("${server.port}")

 private int port;

 /**

 * key：需要从⼊入参取值的属性字段，如果是对象则从对象中取值，如果是单个值则直接使⽤用

 * returnJson：预设拦截时返回值，是返回对象的Json

 *

 * http://localhost:8080/api/queryUserInfo?userId=1001

 * http://localhost:8080/api/queryUserInfo?userId=⼩小团团

 */

 @RequestMapping(path = "/api/queryUserInfo", method =

RequestMethod.GET)

 public UserInfo queryUserInfo(@RequestParam String userId) {

 return new UserInfo("⾍虫⾍虫:" + userId, 19, "天津市南开区旮旯胡同100

号");

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

@SpringBootApplication

@Configuration

public class HelloWorldApplication {

 public static void main(String[] args) {

 SpringApplication.run(HelloWorldApplication.class, args);

 }

}

1

2

3

4

5

6

7

8

9

四、⽤用⼀一坨坨代码实现

⼀一般对于此种场景最简单的做法就是直接修改代码

累加 if块⼏几乎是实现需求最快也是最慢的⽅方式，快是修改当前内容很快，慢是如果同类的内容⼏几百个

也都需要如此修改扩展和维护会越来越慢。

1. ⼯工程结构

以上的实现是模拟⼀一个Api接⼝口类，在⾥里里⾯面添加⽩白名单功能，但类似此类的接⼝口会有很多都需要修
改，所以这也是不不推荐使⽤用此种⽅方式的重要原因。

2. 代码实现

在这⾥里里⽩白名单的代码占据了了⼀一⼤大块，但它⼜又不不是业务中的逻辑，⽽而是因为我们上线过程中需要做的
开量量前测试验证。
如果你⽇日常对待此类需求经常是这样开发，那么可以按照此设计模式进⾏行行优化你的处理理⽅方式，让后
续的扩展和摘除更更加容易易。

五、外观模式重构代码

接下来使⽤用外观器器模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

itstack-demo-design-10-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" HelloWorldController.java

1

2

3

4

5

6

public class HelloWorldController {

 public UserInfo queryUserInfo(@RequestParam String userId) {

 // 做⽩白名单拦截

 List<String> userList = new ArrayList<String>();

 userList.add("1001");

 userList.add("aaaa");

 userList.add("ccc");

 if (!userList.contains(userId)) {

 return new UserInfo("1111", "⾮非⽩白名单可访问⽤用户拦截！");

 }

 return new UserInfo("⾍虫⾍虫:" + userId, 19, "天津市南开区旮旯胡同100

号");

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

这次重构的核⼼心是使⽤用外观模式也可以说⻔门⾯面模式，结合 SpringBoot中的⾃自定义 starter中间件开发

的⽅方式，统⼀一处理理所有需要⽩白名单的地⽅方。

后续接下来的实现中，会涉及的知识；

1. SpringBoot的starter中间件开发⽅方式。
2. ⾯面向切⾯面编程和⾃自定义注解的使⽤用。
3. 外部⾃自定义配置信息的透传，SpringBoot与Spring不不同，对于此类⽅方式获取⽩白名单配置存在差
异。

1. ⼯工程结构

⻔门⾯面模式模型结构

itstack-demo-design-10-02

!"" src
 #"" main
 $ #"" java
 $ $!"" org.itstack.demo.design.door
 $ $ #"" annotation
 $ $ $!"" DoDoor.java
 $ $ #"" config
 $ $ $ #"" StarterAutoConfigure.java
 $ $ $ #"" StarterService.java
 $ $ $!"" StarterServiceProperties.java
 $ $!"" DoJoinPoint.java
 $!"" resources
 $!"" META_INF
 $!"" spring.factories
 !"" test
 !"" java
 !"" org.itstack.demo.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

以上是外观模式的中间件实现思路路，右侧是为了了获取配置⽂文件，左侧是对于切⾯面的处理理。
⻔门⾯面模式可以是对接⼝口的包装提供出接⼝口服务，也可以是对逻辑的包装通过⾃自定义注解对接⼝口提供
服务能⼒力力。

2. 代码实现

2.1 配置服务类

以上类的内容较简单只是为了了获取配置信息。

2.2 配置类注解定义

public class StarterService {

 private String userStr;

 public StarterService(String userStr) {

 this.userStr = userStr;

 }

 public String[] split(String separatorChar) {

 return StringUtils.split(this.userStr, separatorChar);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

@ConfigurationProperties("itstack.door")

public class StarterServiceProperties {

 private String userStr;

1

2

3

4

5

⽤用于定义好后续在 application.yml 中添加 itstack.door 的配置信息。

2.3 ⾃自定义配置类信息获取

以上代码是对配置的获取操作，主要是对注解的定
义； @Configuration、 @ConditionalOnClass、 @EnableConfigurationProperties，这

⼀一部分主要是与SpringBoot的结合使⽤用。

2.4 切⾯面注解定义

定义了了外观模式⻔门⾯面注解，后续就是此注解添加到需要扩展⽩白名单的⽅方法上。

 public String getUserStr() {

 return userStr;

 }

 public void setUserStr(String userStr) {

 this.userStr = userStr;

 }

}

6

7

8

9

10

11

12

13

14

@Configuration

@ConditionalOnClass(StarterService.class)

@EnableConfigurationProperties(StarterServiceProperties.class)

public class StarterAutoConfigure {

 @Autowired

 private StarterServiceProperties properties;

 @Bean

 @ConditionalOnMissingBean

 @ConditionalOnProperty(prefix = "itstack.door", value = "enabled",

havingValue = "true")

 StarterService starterService() {

 return new StarterService(properties.getUserStr());

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface DoDoor {

 String key() default "";

 String returnJson() default "";

}

1

2

3

4

5

6

7

8

9

这⾥里里提供了了两个⼊入参，key：获取某个字段例例如⽤用户ID、returnJson：确定⽩白名单拦截后返回的
具体内容。

2.5 ⽩白名单切⾯面逻辑

@Aspect

@Component

public class DoJoinPoint {

 private Logger logger = LoggerFactory.getLogger(DoJoinPoint.class);

 @Autowired

 private StarterService starterService;

 @Pointcut("@annotation(org.itstack.demo.design.door.annotation.DoDoor)")

 public void aopPoint() {

 }

 @Around("aopPoint()")

 public Object doRouter(ProceedingJoinPoint jp) throws Throwable {

 //获取内容

 Method method = getMethod(jp);

 DoDoor door = method.getAnnotation(DoDoor.class);

 //获取字段值

 String keyValue = getFiledValue(door.key(), jp.getArgs());

 logger.info("itstack door handler method：{} value：{}",

method.getName(), keyValue);

 if (null == keyValue || "".equals(keyValue)) return jp.proceed();

 //配置内容

 String[] split = starterService.split(",");

 //⽩白名单过滤

 for (String str : split) {

 if (keyValue.equals(str)) {

 return jp.proceed();

 }

 }

 //拦截

 return returnObject(door, method);

 }

 private Method getMethod(JoinPoint jp) throws NoSuchMethodException {

 Signature sig = jp.getSignature();

 MethodSignature methodSignature = (MethodSignature) sig;

 return getClass(jp).getMethod(methodSignature.getName(),

methodSignature.getParameterTypes());

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

这⾥里里包括的内容较多，核⼼心逻辑主要是； Object doRouter(ProceedingJoinPoint jp)，接下

来我们分别介绍。

@Pointcut("@annotation(org.itstack.demo.design.door.annotation.DoDoor)")

定义切⾯面，这⾥里里采⽤用的是注解路路径，也就是所有的加⼊入这个注解的⽅方法都会被切⾯面进⾏行行管理理。

getFiledValue

获取指定key也就是获取⼊入参中的某个属性，这⾥里里主要是获取⽤用户ID，通过ID进⾏行行拦截校验。

returnObject

返回拦截后的转换对象，也就是说当⾮非⽩白名单⽤用户访问时则返回⼀一些提示信息。

 private Class<? extends Object> getClass(JoinPoint jp) throws

NoSuchMethodException {

 return jp.getTarget().getClass();

 }

 //返回对象

 private Object returnObject(DoDoor doGate, Method method) throws

IllegalAccessException, InstantiationException {

 Class<?> returnType = method.getReturnType();

 String returnJson = doGate.returnJson();

 if ("".equals(returnJson)) {

 return returnType.newInstance();

 }

 return JSON.parseObject(returnJson, returnType);

 }

 //获取属性值

 private String getFiledValue(String filed, Object[] args) {

 String filedValue = null;

 for (Object arg : args) {

 try {

 if (null == filedValue || "".equals(filedValue)) {

 filedValue = BeanUtils.getProperty(arg, filed);

 } else {

 break;

 }

 } catch (Exception e) {

 if (args.length == 1) {

 return args[0].toString();

 }

 }

 }

 return filedValue;

 }

}

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

doRouter

切⾯面核⼼心逻辑，这⼀一部分主要是判断当前访问的⽤用户ID是否⽩白名单⽤用户，如果是则放
⾏行行 jp.proceed();，否则返回⾃自定义的拦截提示信息。

3. 测试验证

这⾥里里的测试我们会在⼯工程： itstack-demo-design-10-00中进⾏行行操作，通过引⼊入jar包，配置注解的
⽅方式进⾏行行验证。

3.1 引⼊入中间件POM配置

打包中间件⼯工程，给外部提供jar包服务

3.2 配置application.yml

这⾥里里主要是加⼊入了了⽩白名单的开关和⽩白名单的⽤用户ID，逗号隔开。

3.3 在Controller中添加⾃自定义注解

这⾥里里核⼼心的内容主要是⾃自定义的注解的添加 @DoDoor，也就是我们的外观模式中间件化实现。

key：需要从⼊入参取值的属性字段，如果是对象则从对象中取值，如果是单个值则直接使⽤用。
returnJson：预设拦截时返回值，是返回对象的Json。

3.4 启动SpringBoot

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>itstack-demo-design-10-02</artifactId>

</dependency>

1

2

3

4

⾃自定义中间件配置

itstack:

 door:

 enabled: true

 userStr: 1001,aaaa,ccc #⽩白名单⽤用户ID，多个逗号隔开

1

2

3

4

5

/**

 * http://localhost:8080/api/queryUserInfo?userId=1001

 * http://localhost:8080/api/queryUserInfo?userId=⼩小团团

 */

@DoDoor(key = "userId", returnJson = "{\"code\":\"1111\",\"info\":\"⾮非⽩白名单

可访问⽤用户拦截！\"}")

@RequestMapping(path = "/api/queryUserInfo", method = RequestMethod.GET)

public UserInfo queryUserInfo(@RequestParam String userId) {

 return new UserInfo("⾍虫⾍虫:" + userId, 19, "天津市南开区旮旯胡同100号");

}

1

2

3

4

5

6

7

8

9

启动正常，SpringBoot已经启动可以对外提供服务。

3.5 访问接⼝口接⼝口测试

⽩白名单⽤用户访问

http://localhost:8080/api/queryUserInfo?userId=1001

此时的测试结果正常，可以拿到接⼝口数据。

⾮非⽩白名单⽤用户访问

http://localhost:8080/api/queryUserInfo?userId=⼩小团团

这次我们把 userId换成⼩小团团，此时返回的信息已经是被拦截的信息。⽽而这个拦截信息正式我们

⾃自定义注解中的信息： @DoDoor(key = "userId", returnJson = "

{\"code\":\"1111\",\"info\":\"⾮非⽩白名单可访问⽤用户拦截！\"}")

六、总结

以上我们通过中间件的⽅方式实现外观模式，这样的设计可以很好的增强代码的隔离性，以及复⽤用
性，不不仅使⽤用上⾮非常灵活也降低了了每⼀一个系统都开发这样的服务带来的⻛风险。
可能⽬目前你看这只是⾮非常简单的⽩白名单控制，是否需要这样的处理理。但往往⼀一个⼩小⼩小的开始会影响
着后续⽆无限的扩展，实际的业务开发往往也要复杂的很多，不不可能如此简单。因⽽而使⽤用设计模式来

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v2.1.2.RELEASE)

2020-06-11 23:56:55.451 WARN 65228 --- [main]

ion$DefaultTemplateResolverConfiguration : Cannot find template location:

classpath:/templates/ (please add some templates or check your Thymeleaf

configuration)

2020-06-11 23:56:55.531 INFO 65228 --- [main]

o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port(s): 8080

(http) with context path ''

2020-06-11 23:56:55.533 INFO 65228 --- [main]

o.i.demo.design.HelloWorldApplication : Started HelloWorldApplication

in 1.688 seconds (JVM running for 2.934)

1

2

3

4

5

6

7

8

9

10

11

{"code":"0000","info":"success","name":"⾍虫⾍虫:1001","age":19,"address":"天津市

南开区旮旯胡同100号"}

1

{"code":"1111","info":"⾮非⽩白名单可访问⽤用户拦

截！","name":null,"age":null,"address":null}

1

http://localhost:8080/api/queryUserInfo?userId=1001
http://localhost:8080/api/queryUserInfo?userId=%E5%B0%8F%E5%9B%A2%E5%9B%A2

让代码结构更更加⼲干净整洁。
很多时候不不是设计模式没有⽤用，⽽而是⾃自⼰己编程开发经验不不⾜足导致即使学了了设计模式也很难驾驭。毕
竟这些知识都是经过⼀一些实际操作提炼出来的精华，但如果你可以按照本系列列⽂文章中的案例例⽅方式进
⾏行行学习实操，还是可以增强这部分设计能⼒力力的。

第 6 节：享元模式

程序员 !的上下⽂文是什什么？

很多时候⼀一⼤大部分编程开发的⼈人员都只是关注于功能的实现，只要⾃自⼰己把这部分需求写完就可以了了，有
点像被动的交作业。这样的问题⼀一⽅方⾯面是由于很多新⼈人还不不了了解程序员的职业发展，还有⼀一部分是对于
编程开发只是⼯工作并⾮非兴趣。但在程序员的发展来看，如果不不能很好的处理理上⽂文(产品)，下⽂文(测试)，
在这样不不能很好的了了解业务和产品发展，也不不能编写出很有体系结构的代码，⽇日久天⻓长，1到3年年、3到5
年年，就很难跨越⼀一个个技术成⻓长的分⽔水岭。

拥有接受和学习新知识的能⼒力力

你是否有感受过⼩小时候在什什么都还不不会的时候接受知识的能⼒力力很强，但随着我们开始⻓长⼤大后，慢慢学习
能⼒力力、处事⽅方式、性格品⾏行行，往往会固定。⼀一⽅方⾯面是形成了了各⾃自的性格特征，⼀一⽅方⾯面是圈⼦子已经固定。
但也正因为这样的故步，⽽而很少愿意听取别⼈人的意⻅见，就像即使看到了了⼀一整⽚片内容，在视觉盲区下也会
过掉到80%，就在眼前也看不不⻅见，也因此导致了了能⼒力力不不再有较⼤大的提升。

编程能⼒力力怎样会成⻓长的最快

⼯工作内容往往有些像在⼯工⼚厂 *拧螺丝，⼤大部分内容是重复的，也可以想象过去的⼀一年年你有过多少创新和
学习了了新的技能。那么这时候⼀一般为了了多学些内容会买⼀一些技术书籍，但！技术类书籍和其他书籍不不
同，只要不不去⽤用看了了也就只是轻描淡写，很难接纳和理理解。就像设计模式，虽然可能看了了⼏几遍，但是在
实际编码中仍然很少会⽤用，⼤大部分原因还是没有认认真真的跟着实操。事必躬亲才是学习编程的最好是
⽅方式。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，

https://bugstack.cn/assets/images/qrcode.png

⼯工程 描述

itstack-demo-design-11-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-11-02 通过设计模式优化代码结构，减少内存使⽤用和查询耗时

找到序号18)

⼆二、享元模式介绍

享元模式，主要在于共享通⽤用对象，减少内存的使⽤用，提升系统的访问效率。⽽而这部分共享对象通常⽐比
较耗费内存或者需要查询⼤大量量接⼝口或者使⽤用数据库资源，因此统⼀一抽离作为共享对象使⽤用。

另外享元模式可以分为在服务端和客户端，⼀一般互联⽹网H5和Web场景下⼤大部分数据都需要服务端进⾏行行
处理理，⽐比如数据库连接池的使⽤用、多线程线程池的使⽤用，除了了这些功能外，还有些需要服务端进⾏行行包装
后的处理理下发给客户端，因为服务端需要做享元处理理。但在⼀一些游戏场景下，很多都是客户端需要进⾏行行
渲染地图效果，⽐比如；树⽊木、花草、⻥鱼⾍虫，通过设置不不同元素描述使⽤用享元公⽤用对象，减少内存的占
⽤用，让客户端的游戏更更加流畅。

在享元模型的实现中需要使⽤用到享元⼯工⼚厂来进⾏行行管理理这部分独⽴立的对象和共享的对象，避免出现线程安
全的问题。

三、案例例场景模拟

在这个案例例中我们模拟在商品秒杀场景下使⽤用享元模式查询优化

你是否经历过⼀一个商品下单的项⽬目从最初的⽇日均⼗十⼏几单到⼀一个⽉月后每个时段秒杀量量破⼗十万的项⽬目。⼀一般
在最初如果没有经验的情况下可能会使⽤用数据库⾏行行级锁的⽅方式下保证商品库存的扣减操作，但是随着业
务的快速发展秒杀的⽤用户越来越多，这个时候数据库已经扛不不住了了，⼀一般都会使⽤用redis的分布式锁来控
制商品库存。

同时在查询的时候也不不需要每⼀一次对不不同的活动查询都从库中获取，因为这⾥里里除了了库存以外其他的活动
商品信息都是固定不不变的，以此这⾥里里⼀一般⼤大家会缓存到内存中。

这⾥里里我们模拟使⽤用享元模式⼯工⼚厂结构，提供活动商品的查询。活动商品相当于不不变的信息，⽽而库存部分
属于变化的信息。

四、⽤用⼀一坨坨代码实现

逻辑很简单，就怕你写乱。⼀一⽚片⽚片的固定内容和变化内容的查询组合，CV的哪⾥里里都是！

其实这部分逻辑的查询在⼀一般情况很多程序员都是先查询固定信息，在使⽤用过滤的或者添加if判断的⽅方
式补充变化的信息，也就是库存。这样写最开始并不不会看出来有什什么问题，但随着⽅方法逻辑的增加，后
⾯面就越来越多重复的代码。

1. ⼯工程结构

以上⼯工程结构⽐比较简单，之后⼀一个控制类⽤用于查询活动信息。

itstack-demo-design-11-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" ActivityController.java

1

2

3

4

5

6

2. 代码实现

这⾥里里模拟的是从接⼝口中查询活动信息，基本也就是从数据库中获取所有的商品信息和库存。有点像
最开始写的商品销售系统，数据库就可以抗住购物量量。
当后续因为业务的发展需要扩展代码将库存部分交给redis处理理，那么就需要从redis中获取活动的
库存，⽽而不不是从库中，否则将造成数据不不统⼀一的问题。

五、享元模式重构代码

接下来使⽤用享元模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

享元模式⼀一般情况下使⽤用此结构在平时的开发中并不不太多，除了了⼀一些线程池、数据库连接池外，再就是
游戏场景下的场景渲染。另外这个设计的模式思想是减少内存的使⽤用提升效率，与我们之前使⽤用的原型
模式通过克隆隆对象的⽅方式⽣生成复杂对象，减少rpc的调⽤用，都是此类思想。

1. ⼯工程结构

/**

 * 博客：https://bugstack.cn - 沉淀、分享、成⻓长，让⾃自⼰己和他⼈人都能有所收获！

 * 公众号：bugstack⾍虫洞洞栈

 * Create by ⼩小傅哥(fustack) @2020

 */

public class ActivityController {

 public Activity queryActivityInfo(Long id) {

 // 模拟从实际业务应⽤用从接⼝口中获取活动信息

 Activity activity = new Activity();

 activity.setId(10001L);

 activity.setName("图书嗨乐");

 activity.setDesc("图书优惠券分享激励分享活动第⼆二期");

 activity.setStartTime(new Date());

 activity.setStopTime(new Date());

 activity.setStock(new Stock(1000,1));

 return activity;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

itstack-demo-design-11-02

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" util
 $ $!"" RedisUtils.java
 $ #"" Activity.java
 $ #"" ActivityController.java
 $ #"" ActivityFactory.java
 $!"" Stock.java

1

2

3

4

5

6

7

8

9

10

11

享元模式模型结构

以上是我们模拟查询活动场景的类图结构，左侧构建的是享元⼯工⼚厂，提供固定活动数据的查询，右
侧是Redis存放的库存数据。
最终交给活动控制类来处理理查询操作，并提供活动的所有信息和库存。因为库存是变化的，所以我
们模拟的 RedisUtils中设置了了定时任务使⽤用库存。

2. 代码实现

2.1 活动信息

 !"" test
 !"" java
 !"" org.itstack.demo.test
 !"" ApiTest.java

12

13

14

15

/**

 * 博客：https://bugstack.cn - 沉淀、分享、成⻓长，让⾃自⼰己和他⼈人都能有所收获！

 * 公众号：bugstack⾍虫洞洞栈

 * Create by ⼩小傅哥(fustack) @2020

 */

public class Activity {

 private Long id; // 活动ID

 private String name; // 活动名称

 private String desc; // 活动描述

1

2

3

4

5

6

7

8

9

10

这⾥里里的对象类⽐比较简单，只是⼀一个活动的基础信息；id、名称、描述、时间和库存。

2.2 库存信息

这⾥里里是库存数据我们单独提供了了⼀一个类进⾏行行保存数据。

2.3 享元⼯工⼚厂

 private Date startTime; // 开始时间

 private Date stopTime; // 结束时间

 private Stock stock; // 活动库存

 // ...get/set

}

11

12

13

14

15

16

public class Stock {

 private int total; // 库存总量量

 private int used; // 库存已⽤用

 // ...get/set

}

1

2

3

4

5

6

7

/**

 * 博客：https://bugstack.cn - 沉淀、分享、成⻓长，让⾃自⼰己和他⼈人都能有所收获！

 * 公众号：bugstack⾍虫洞洞栈

 * Create by ⼩小傅哥(fustack) @2020

 */

public class ActivityFactory {

 static Map<Long, Activity> activityMap = new HashMap<Long, Activity>

();

 public static Activity getActivity(Long id) {

 Activity activity = activityMap.get(id);

 if (null == activity) {

 // 模拟从实际业务应⽤用从接⼝口中获取活动信息

 activity = new Activity();

 activity.setId(10001L);

 activity.setName("图书嗨乐");

 activity.setDesc("图书优惠券分享激励分享活动第⼆二期");

 activity.setStartTime(new Date());

 activity.setStopTime(new Date());

 activityMap.put(id, activity);

 }

 return activity;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

这⾥里里提供的是⼀一个享元⼯工⼚厂

*

，通过 map结构存放已经从库表或者接⼝口中查询到的数据，存放到

内存中，⽤用于下次可以直接获取。
这样的结构⼀一般在我们的编程开发中还是⽐比较常⻅见的，当然也有些时候为了了分布式的获取，会把数
据存放到redis中，可以按需选择。

2.4 模拟Redis类

这⾥里里处理理模拟 redis的操作⼯工具类外，还提供了了⼀一个定时任务⽤用于模拟库存的使⽤用，这样⽅方⾯面我

们在测试的时候可以观察到库存的变化。

2.4 活动控制类

/**

 * 博客：https://bugstack.cn - 沉淀、分享、成⻓长，让⾃自⼰己和他⼈人都能有所收获！

 * 公众号：bugstack⾍虫洞洞栈

 * Create by ⼩小傅哥(fustack) @2020

 */

public class RedisUtils {

 private ScheduledExecutorService scheduledExecutorService =

Executors.newScheduledThreadPool(1);

 private AtomicInteger stock = new AtomicInteger(0);

 public RedisUtils() {

 scheduledExecutorService.scheduleAtFixedRate(() -> {

 // 模拟库存消耗

 stock.addAndGet(1);

 }, 0, 100000, TimeUnit.MICROSECONDS);

 }

 public int getStockUsed() {

 return stock.get();

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

/**

 * 博客：https://bugstack.cn - 沉淀、分享、成⻓长，让⾃自⼰己和他⼈人都能有所收获！

 * 公众号：bugstack⾍虫洞洞栈

 * Create by ⼩小傅哥(fustack) @2020

 */

public class ActivityController {

 private RedisUtils redisUtils = new RedisUtils();

 public Activity queryActivityInfo(Long id) {

 Activity activity = ActivityFactory.getActivity(id);

1

2

3

4

5

6

7

8

9

10

11

在活动控制类中使⽤用了了享元⼯工⼚厂获取活动信息，查询后将库存信息在补充上。因为库存信息是变化
的，⽽而活动信息是固定不不变的。
最终通过统⼀一的控制类就可以把完整包装后的活动信息返回给调⽤用⽅方。

3. 测试验证

3.1 编写测试类

这⾥里里我们通过活动查询控制类，在 for循环的操作下查询了了⼗十次活动信息，同时为了了保证库存定

时任务的变化，加了了睡眠操作，实际的开发中不不会有这样的睡眠。

3.2 测试结果

 // 模拟从Redis中获取库存变化信息

 Stock stock = new Stock(1000, redisUtils.getStockUsed());

 activity.setStock(stock);

 return activity;

 }

}

12

13

14

15

16

17

18

public class ApiTest {

 private Logger logger = LoggerFactory.getLogger(ApiTest.class);

 private ActivityController activityController = new

ActivityController();

 @Test

 public void test_queryActivityInfo() throws InterruptedException {

 for (int idx = 0; idx < 10; idx++) {

 Long req = 10001L;

 Activity activity = activityController.queryActivityInfo(req);

 logger.info("测试结果：{} {}", req,

JSON.toJSONString(activity));

 Thread.sleep(1200);

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

可以仔细看下 stock部分的库存是⼀一直在变化的，其他部分是活动信息，是固定的，所以我们使

⽤用享元模式来将这样的结构进⾏行行拆分。

六、总结

关于享元模式的设计可以着重学习享元⼯工⼚厂的设计，在⼀一些有⼤大量量重复对象可复⽤用的场景下，使⽤用

22:35:20.285 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":1},"stopTime":1592130919931}

22:35:21.634 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":18},"stopTime":1592130919931}

22:35:22.838 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":30},"stopTime":1592130919931}

22:35:24.042 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":42},"stopTime":1592130919931}

22:35:25.246 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":54},"stopTime":1592130919931}

22:35:26.452 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":66},"stopTime":1592130919931}

22:35:27.655 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":78},"stopTime":1592130919931}

22:35:28.859 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":90},"stopTime":1592130919931}

22:35:30.063 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":102},"stopTime":1592130919931}

22:35:31.268 [main] INFO org.i..t.ApiTest - 测试结果：10001 {"desc":"图书优

惠券分享激励分享活动第⼆二期","id":10001,"name":"图书嗨

乐","startTime":1592130919931,"stock":

{"total":1000,"used":114},"stopTime":1592130919931}

Process finished with exit code 0

1

2

3

4

5

6

7

8

9

10

11

12

此场景在服务端减少接⼝口的调⽤用，在客户端减少内存的占⽤用。是这个设计模式的主要应⽤用⽅方式。
另外通过 map结构的使⽤用⽅方式也可以看到，使⽤用⼀一个固定id来存放和获取对象，是⾮非常关键的点。
⽽而且不不只是在享元模式中使⽤用，⼀一些其他⼯工⼚厂模式、适配器器模式、组合模式中都可以通过map结
构存放服务供外部获取，减少ifelse的判断使⽤用。
当然除了了这种设计的减少内存的使⽤用优点外，也有它带来的缺点，在⼀一些复杂的业务处理理场景，很
不不容易易区分出内部和外部状态，就像我们活动信息部分与库存变化部分。如果不不能很好的拆分，就
会把享元⼯工⼚厂设计的⾮非常混乱，难以维护。

第 7 节：代理理模式

难以跨越的瓶颈期，把你拿捏滴死死的！

编程开发学习过程中遇到的瓶颈期，往往是由于看不不到前进的⽅方向。这个时候你特别希望能有⼈人告诉
你，你还⽋欠缺些什什么朝着哪个⽅方向努⼒力力。⽽而导致这⼀一问题的主要原因是由于⽇日常的业务开发太过于复制
过去，⽇日复⼀一⽇日的重复。没有太多的挑战，也没参与过较⼤大体量量的业务场景，除了了这些开发场景因素
外，还有缺少组内的技术氛围和技术分享，没有⼈人做传播和布道者，也缺少⾃自⼰己对各项技术学习的热
情，从⽽而导致⼀一直游荡在瓶颈之下，难以提升。

⼩小公司与⼤大公司，选择哪个？

刨除掉薪资以外你会选择什什么，是不不有⼈人建议⼩小公司，因为可以接触到各个环境，也有⼈人建议⼤大公司，
因为正规体量量⼤大可以学习到更更多。有些时候你的技术成⻓长缓慢也是因为你的不不同选择⽽而导致的，⼩小公司
确实要接触各个环境，但往往如果你所做的业务体量量不不⾼高，那么你会⽤用到的技术栈就会相对较少，同时
也会技术栈研究的深度也会较浅。⼤大公司中确实有时候你不不需要去关⼼心⼀一个集群的部署和维护、⼀一个中
间件的开发、全套服务监控等等，但如果你愿意了了解这些技术在内部都是公开的，你会拥有⽆无限的技术
营养可以补充。⽽而这最主要的是提升视野和事业。

除了了业务中的CRUD开发，有些技术你真的很难接触到！

可能很多⼩小伙伴认为技术开发就是承接下产品需求，写写CRUD，不不会的百度⼀一下，就完事了了，总觉得
别⼈人问的东⻄西像再造⽕火箭⼀一样。但在⾼高体量量、⾼高并发的业务场景下，每⼀一次的压测优化，性能提升，都
像在研究⼀一道数学题⼀一样，反复的锤炼，压榨性能。不不断的深究，找到最合适的设计。除了了这些优化提
升外，还有那么⼴广阔的技术体系栈，都可能因为你只是注重CRUD⽽而被忽略略；字节码编程、领域驱动设
计架构、代理理模式中间件开发、JVM虚拟机实现原理理等等。

⼀一、开发环境

⼯工程 描述

itstack-demo-design-12-00 模拟MyBatis开发中间件代理理类部分

1. JDK 1.8
2. Idea + Maven
3. Spring 4.3.24.RELEASE
4. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、代理理模式介绍

代理理模式有点像⽼老老⼤大和⼩小弟，也有点像分销商。主要解决的是问题是为某些资源的访问、对象的类的易易
⽤用操作上提供⽅方便便使⽤用的代理理服务。⽽而这种设计思想的模式经常会出现在我们的系统中，或者你⽤用到过
的组件中，它们都提供给你⼀一种⾮非常简单易易⽤用的⽅方式控制原本你需要编写很多代码的进⾏行行使⽤用的服务
类。

类似这样的场景可以想到；

1. 你的数据库访问层⾯面经常会提供⼀一个较为基础的应⽤用，以此来减少应⽤用服务扩容时不不⾄至于数据库连
接数暴暴增。

2. 使⽤用过的⼀一些中间件例例如；RPC框架，在拿到jar包对接⼝口的描述后，中间件会在服务启动的时候⽣生
成对应的代理理类，当调⽤用接⼝口的时候，实际是通过代理理类发出的socket信息进⾏行行通过。

3. 另外像我们常⽤用的 MyBatis，基本是定义接⼝口但是不不需要写实现类，就可以对 xml或者⾃自定义注

解⾥里里的 sql语句句进⾏行行增删改查操作。

三、案例例场景模拟

https://bugstack.cn/assets/images/qrcode.png

在本案例例中我们模拟实现mybatis-spring中代理理类⽣生成部分

对于Mybatis的使⽤用中只需要定义接⼝口不不需要写实现类就可以完成增删改查操作，有疑问的⼩小伙伴，在
本章节中就可以学习到这部分知识。解析下来我们会通过实现⼀一个这样的代理理类交给spring管理理的核⼼心
过程，来讲述代理理类模式。

这样的案例例场景在实际的业务开发中其实不不多，因为这是将这种思想运⽤用在中间件开发上，⽽而很多⼩小伙
伴经常是做业务开发，所以对Spring的bean定义以及注册和对代理理以及反射调⽤用的知识了了解的相对较
少。但可以通过本章节作为⼀一个⼊入⻔门学习，逐步了了解。

四、代理理类模式实现过程

接下来会使⽤用代理理类模式来模拟实现⼀一个Mybatis中对类的代理理过程，也就是只需要定义接⼝口，就可以
关联到⽅方法注解中的 sql语句句完成对数据库的操作。

这⾥里里需要注意⼀一些知识点；

1. BeanDefinitionRegistryPostProcessor，spring的接⼝口类⽤用于处理理对bean的定义注册。
2. GenericBeanDefinition，定义bean的信息，在mybatis-spring中使⽤用到的
是； ScannedGenericBeanDefinition 略略有不不同。

3. FactoryBean，⽤用于处理理bean⼯工⼚厂的类，这个类⾮非常⻅见。

1. ⼯工程结构

itstack-demo-design-12-00

!"" src
 #"" main
 $ #"" java
 $ $!"" org.itstack.demo.design
 $ $ #"" agent

1

2

3

4

5

6

代理理模式中间件模型结构

此模型中涉及的类并不不多，但都是抽离出来的核⼼心处理理类。主要的事情就是对类的代理理和注册到
spring中。
上图中最上⾯面是关于中间件的实现部分，下⾯面对应的是功能的使⽤用。

2. 代码实现

2.1 ⾃自定义注解

这⾥里里我们定义了了⼀一个模拟mybatis-spring中的⾃自定义注解，⽤用于使⽤用在⽅方法层⾯面。

2.2 Dao层接⼝口

 $ $ $ #"" MapperFactoryBean.java
 $ $ $ #"" RegisterBeanFactory.java
 $ $ $!"" Select.java
 $ $!"" IUserDao.java
 $!"" resources
 $!"" spring-config.xml
 !"" test
 !"" java
 !"" org.itstack.demo.test
 !"" ApiTest.java

7

8

9

10

11

12

13

14

15

16

@Documented

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.METHOD})

public @interface Select {

 String value() default ""; // sql语句句

}

1

2

3

4

5

6

7

8

这⾥里里定义⼀一个Dao层接⼝口，并把⾃自定义注解添加上。这与你使⽤用的mybatis组件是⼀一样的。
2.1和2.2是我们的准备⼯工作，后⾯面开始实现中间件功能部分。

2.3 代理理类定义

public interface IUserDao {

 @Select("select userName from user where id = #{uId}")

 String queryUserInfo(String uId);

}

1

2

3

4

5

6

public class MapperFactoryBean<T> implements FactoryBean<T> {

 private Logger logger =

LoggerFactory.getLogger(MapperFactoryBean.class);

 private Class<T> mapperInterface;

 public MapperFactoryBean(Class<T> mapperInterface) {

 this.mapperInterface = mapperInterface;

 }

 @Override

 public T getObject() throws Exception {

 InvocationHandler handler = (proxy, method, args) -> {

 Select select = method.getAnnotation(Select.class);

 logger.info("SQL：{}", select.value().replace("#{uId}",

args[0].toString()));

 return args[0] + ",⼩小傅哥,bugstack.cn - 沉淀、分享、成⻓长，让⾃自⼰己和他

⼈人都能有所收获！";

 };

 return (T)

Proxy.newProxyInstance(this.getClass().getClassLoader(), new Class[]

{mapperInterface}, handler);

 }

 @Override

 public Class<?> getObjectType() {

 return mapperInterface;

 }

 @Override

 public boolean isSingleton() {

 return true;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

如果你有阅读过mybatis源码，是可以看到这样的⼀一个类； MapperFactoryBean，这⾥里里我们也模

拟⼀一个这样的类，在⾥里里⾯面实现我们对代理理类的定义。
通过继承 FactoryBean，提供bean对象，也就是⽅方法； T getObject()。

在⽅方法 getObject()中提供类的代理理以及模拟对sql语句句的处理理，这⾥里里包含了了⽤用户调⽤用dao层⽅方法
时候的处理理逻辑。
还有最上⾯面我们提供构造函数来透传需要被代理理类， Class<T> mapperInterface，在mybatis
中也是使⽤用这样的⽅方式进⾏行行透传。
另外 getObjectType()提供对象类型反馈，以及 isSingleton()返回类是单例例的。

2.4 将Bean定义注册到Spring容器器

这⾥里里我们将代理理的bean交给spring容器器管理理，也就可以⾮非常⽅方便便让我们可以获取到代理理的bean。
这部分是spring中关于⼀一个bean注册过程的源码。
GenericBeanDefinition，⽤用于定义⼀一个bean的基本信
息 setBeanClass(MapperFactoryBean.class);，也包括可以透传给构造函数信

息 addGenericArgumentValue(IUserDao.class);

最后使⽤用 BeanDefinitionReaderUtils.registerBeanDefinition，进⾏行行bean的注册，也就
是注册到 DefaultListableBeanFactory中。

public class RegisterBeanFactory implements

BeanDefinitionRegistryPostProcessor {

 @Override

 public void postProcessBeanDefinitionRegistry(BeanDefinitionRegistry

registry) throws BeansException {

 GenericBeanDefinition beanDefinition = new

GenericBeanDefinition();

 beanDefinition.setBeanClass(MapperFactoryBean.class);

 beanDefinition.setScope("singleton");

 beanDefinition.getConstructorArgumentValues().addGenericArgumentValue(IUs

erDao.class);

 BeanDefinitionHolder definitionHolder = new

BeanDefinitionHolder(beanDefinition, "userDao");

 BeanDefinitionReaderUtils.registerBeanDefinition(definitionHolder,

registry);

 }

 @Override

 public void postProcessBeanFactory(ConfigurableListableBeanFactory

configurableListableBeanFactory) throws BeansException {

 // left intentionally blank

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2.5 配置⽂文件spring-config

接下来在配置⽂文件中添加我们的bean配置，在mybatis的使⽤用中⼀一般会配置扫描的dao层包，这样
就可以减少这部分的配置。

3. 测试验证

3.1 编写测试类

测试的过程⽐比较简单，通过加载Bean⼯工⼚厂获取我们的代理理类的实例例对象，之后调⽤用⽅方法返回结
果。
那么这个过程你可以看到我们是没有对接⼝口先⼀一个实现类的，⽽而是使⽤用代理理的⽅方式给接⼝口⽣生成⼀一个
实现类，并交给spring管理理。

3.2 测试结果

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd"

 default-autowire="byName">

 <bean id="userDao"

class="org.itstack.demo.design.agent.RegisterBeanFactory"/>

</beans>

1

2

3

4

5

6

7

8

9

@Test

public void test_IUserDao() {

 BeanFactory beanFactory = new ClassPathXmlApplicationContext("spring-

config.xml");

 IUserDao userDao = beanFactory.getBean("userDao", IUserDao.class);

 String res = userDao.queryUserInfo("100001");

 logger.info("测试结果：{}", res);

}

1

2

3

4

5

6

7

从测试结果可以看到，我们打印了了SQL语句句，这部分语句句是从⾃自定义注解中获取的； select

userName from user where id = 100001，我们做了了简单的适配。在mybatis框架中会交给
SqlSession的实现类进⾏行行逻辑处理理返回操作数据库数据

⽽而这⾥里里我们的测试结果是⼀一个固定的，如果你愿意更更加深⼊入的研究可以尝试与数据库操作层进⾏行行关
联，让这个框架可以更更加完善。

五、总结

关于这部分代理理模式的讲解我们采⽤用了了开发⼀一个关于 mybatis-spring中间件中部分核⼼心功能来

体现代理理模式的强⼤大之处，所以涉及到了了⼀一些关于代理理类的创建以及spring中bean的注册这些知
识点，可能在平常的业务开发中都是很少⽤用到的，但是在中间件开发中确实⾮非常常⻅见的操作。
代理理模式除了了开发中间件外还可以是对服务的包装，物联⽹网组件等等，让复杂的各项服务变为轻量量
级调⽤用、缓存使⽤用。你可以理理解为你家⾥里里的电灯开关，我们不不能操作220v电线的⼈人⾁肉连接，但是
可以使⽤用开关，避免触电。
代理理模式的设计⽅方式可以让代码更更加整洁、⼲干净易易于维护，虽然在这部分开发中额外增加了了很多类
也包括了了⾃自⼰己处理理bean的注册等，但是这样的中间件复⽤用性极⾼高也更更加智能，可以⾮非常⽅方便便的扩
展到各个服务应⽤用中。

23:21:57.551 [main] DEBUG o.s.core.env.StandardEnvironment - Adding

PropertySource 'systemProperties' with lowest search precedence

...

23:21:57.858 [main] DEBUG o.s.c.s.ClassPathXmlApplicationContext - Unable

to locate LifecycleProcessor with name 'lifecycleProcessor': using default

[org.springframework.context.support.DefaultLifecycleProcessor@7bc1a03d]

23:21:57.859 [main] DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning

cached instance of singleton bean 'lifecycleProcessor'

23:21:57.860 [main] DEBUG o.s.c.e.PropertySourcesPropertyResolver - Could

not find key 'spring.liveBeansView.mbeanDomain' in any property source

23:21:57.861 [main] DEBUG o.s.b.f.s.DefaultListableBeanFactory - Returning

cached instance of singleton bean 'userDao'

23:21:57.915 [main] INFO o.i.d.design.agent.MapperFactoryBean - SQL：

select userName from user where id = 100001

23:21:57.915 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：

100001,⼩小傅哥,bugstack.cn - 沉淀、分享、成⻓长，让⾃自⼰己和他⼈人都能有所收获！

Process finished with exit code 0

1

2

3

4

5

6

7

8

9

10

⾏行行为模式(10节)
这类模式负责对象间的⾼高效沟通和职责委派。

⾏行行为模式包括：责任链、命令、迭代器器、中介者、备忘录、观察者、状态、策略略、模板、访问者，这10
类。

第 1 节：责任链模式

场地和场景的重要性

射击 +需要去靶场学习、滑雪 ,需要去雪场体验、开⻋车 -需要能上路路实践，⽽而编程开发除了了能完成产
品的功能流程，还需要保证系统的可靠性能。就像你能听到的⼀一些系统监控指
标； QPS、 TPS、 TP99、 TP999、可⽤用率、响应时⻓长等等，⽽而这些指标的总和评估就是⼀一个系统的

健康度。但如果你⼏几乎没有听到这样的技术术语，也没接触过类似⾼高并发场景，那么就很像驾驶证的科
⽬目1考了了100分，但不不能上路路。没有这样的技术场景给你训练，让你不不断的体会系统的脾⽓气秉性，即便便你
有再多的想法都没法实现。所以，如果真的想学习⼀一定要去⼀一个有实操的场景，下⽔水试试才能学会狗
刨。

你的视觉盲区有多⼤大

同样⼀一本书、同样⼀一条路路、同样⼀一座城，你真的以为⽣生活有选择吗？有时候很多选项都是摆设，给你多
少次机会你都选的⼀一模⼀一样。这不不是你选不不选⽽而是你的认知范围决定了了你下⼀一秒做的事情，另外的⼀一个
下⼀一秒⼜又决定了了再下⼀一个下⼀一秒。就像管中窥豹⼀一样，20%的⾯面积在你视觉⾥里里都是⿊黑⾊色的，甚⾄至就总是
忽略略看不不到，⽽而这看不不到的20%就是⽣生命中的时运！但，⼈人可以学习，可以成⻓长，可以脱胎换⻣骨，可以
努⼒力力付出，通过⼀一次次的蜕变⽽而看到剩下的20%！

没有设计图纸你敢盖楼吗

编程开发中最好的什什么，是设计。运⽤用架构思维、经验⼼心得、才华灵感，构建出最佳的系统。真正的研

发会把⾃自⼰己写的代码当做作品来欣赏，你说这是⼀一份⼯工作，但在这样的⼈人眼⾥里里这可不不是⼀一份⼯工作，⽽而是
⼀一份⼯工匠精神。就像可能时⽽而你也会为⾃自⼰己因为⼀一个 niubility的设计⽽而豪迈万丈，为能上线⼀一个扛

得住每秒200万访问量量的系统会精神焕发。这样的⾃自豪感就是⼀一次次垒砖⼀一样垫⾼高脚底，不不断的把你的
视野提⾼高，让你能看到上层设计也能知晓根基建设。可以把控全局，也可以治理理细节。这⼀一份份知识的
沉淀，来帮助你绘制出⼀一张系统架构蓝图。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

https://bugstack.cn/assets/images/qrcode.png

⼯工程 描述

itstack-demo-design-13-00 场景模拟⼯工程；模拟⼀一个上线流程审批的接⼝口。

itstack-demo-design-13-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-13-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

⼆二、责任链模式介绍

击⿎鼓传雷雷，看上图你是否想起周星驰有⼀一个电影，⼤大家坐在海海边围成⼀一个圈，拿着⼀一个点燃的炸弹，互
相传递。

责任链模式的核⼼心是解决⼀一组服务中的先后执⾏行行处理理关系，就有点像你没钱花了了，需要家庭财务⽀支出审
批，10块钱以下找闺⼥女女审批，100块钱先闺⼥女女审批在媳妇审批。你可以理理解想象成当你要跳槽的时候被
安排的明明⽩白⽩白的被各个领导签字放⾏行行。

三、案例例场景模拟

在本案例例中我们模拟在618⼤大促期间的业务系统上线审批流程场景

像是这些⼀一线电商类的互联⽹网公司，阿⾥里里、京东、拼多多等，在618期间都会做⼀一些运营活动场景以及
提供的扩容备战，就像过年年期间百度的红包⼀一样。但是所有开发的这些系统都需要陆续的上线，因为临
近618有时候也有⼀一些紧急的调整的需要上线，但为了了保障线上系统的稳定性是尽可能的减少上线的，
也会相应的增强审批⼒力力度。就像⼀一级响应、⼆二级响应⼀一样。

⽽而这审批的过程在随着特定时间点会增加不不同级别的负责⼈人加⼊入，每个⼈人就像责任链模式中的每⼀一个核
⼼心点。对于研发⼩小伙伴并不不需要关⼼心具体的审批流程处理理细节，只需要知道这个上线更更严格，级别也更更
⾼高，但对于研发⼈人员来说同样是点击相同的提审按钮，等待审核。

接下来我们就模拟这样⼀一个业务诉求场景，使⽤用责任链的设计模式来实现此功能。

1. 场景模拟⼯工程

这⾥里里的代码结构⽐比较简单，只有⼀一个模拟审核和查询审核结果的服务类。相当于你可以调⽤用这个类
去审核⼯工程和获取审核结构，这部分结果信息是模拟的写到缓存实现。

2. 场景简述

2.1 模拟审核服务

itstack-demo-design-13-00

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" AuthService.java

1

2

3

4

5

6

这⾥里里⾯面提供了了两个接⼝口⼀一个是查询审核结果(queryAuthInfo)、另外⼀一个是处理理审核(auth)。
这部分是把由谁审核的和审核的单⼦子ID作为唯⼀一key值记录到内存Map结构中。

四、⽤用⼀一坨坨代码实现

这⾥里里我们先使⽤用最直接的⽅方式来实现功能

按照我们的需求审批流程，平常系统上线只需要三级负责⼈人审批就可以，但是到了了618⼤大促时间点，就
需要由⼆二级负责以及⼀一级负责⼈人⼀一起加⼊入审批系统上线流程。在这⾥里里我们使⽤用⾮非常直接的if判断⽅方式来
实现这样的需求。

1. ⼯工程结构

这部分⾮非常简单的只包含了了⼀一个审核的控制类，就像有些伙伴开始写代码⼀一样，⼀一个类写所有需
求。

2. 代码实现

public class AuthService {

 private static Map<String, Date> authMap = new

ConcurrentHashMap<String, Date>();

 public static Date queryAuthInfo(String uId, String orderId) {

 return authMap.get(uId.concat(orderId));

 }

 public static void auth(String uId, String orderId) {

 authMap.put(uId.concat(orderId), new Date());

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

itstack-demo-design-13-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" AuthController.java

1

2

3

4

5

6

public class AuthController {

 private SimpleDateFormat f = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss");// 时间格式化

 public AuthInfo doAuth(String uId, String orderId, Date authDate)

throws ParseException {

1

2

3

4

5

6

这⾥里里从上到下分别判断了了在指定时间范围内由不不同的⼈人员进⾏行行审批，就像618上线的时候需要三个
负责⼈人都审批才能让系统进⾏行行上线。
像是这样的功能看起来很简单的，但是实际的业务中会有很多部⻔门，但如果这样实现就很难进⾏行行扩
展，并且在改动扩展调整也⾮非常麻烦。

3. 测试验证

3.1 编写测试类

 // 三级审批

 Date date = AuthService.queryAuthInfo("1000013", orderId);

 if (null == date) return new AuthInfo("0001", "单号：", orderId, "

状态：待三级审批负责⼈人 ", "王⼯工");

 // ⼆二级审批

 if (authDate.after(f.parse("2020-06-01 00:00:00")) &&

authDate.before(f.parse("2020-06-25 23:59:59"))) {

 date = AuthService.queryAuthInfo("1000012", orderId);

 if (null == date) return new AuthInfo("0001", "单号：",

orderId, " 状态：待⼆二级审批负责⼈人 ", "张经理理");

 }

 // ⼀一级审批

 if (authDate.after(f.parse("2020-06-11 00:00:00")) &&

authDate.before(f.parse("2020-06-20 23:59:59"))) {

 date = AuthService.queryAuthInfo("1000011", orderId);

 if (null == date) return new AuthInfo("0001", "单号：",

orderId, " 状态：待⼀一级审批负责⼈人 ", "段总");

 }

 return new AuthInfo("0001", "单号：", orderId, " 状态：审批完成");

 }

}

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

@Test

public void test_AuthController() throws ParseException {

 AuthController authController = new AuthController();

 // 模拟三级负责⼈人审批

 logger.info("测试结果：{}", JSON.toJSONString(authController.doAuth("⼩小

傅哥", "1000998004813441", new Date())));

 logger.info("测试结果：{}", "模拟三级负责⼈人审批，王⼯工");

 AuthService.auth("1000013", "1000998004813441");

 // 模拟⼆二级负责⼈人审批

 logger.info("测试结果：{}", JSON.toJSONString(authController.doAuth("⼩小

傅哥", "1000998004813441", new Date())));

 logger.info("测试结果：{}", "模拟⼆二级负责⼈人审批，张经理理");

1

2

3

4

5

6

7

8

9

10

11

12

这⾥里里模拟每次查询是否审批完成，随着审批的不不同节点，之后继续由不不同的负责⼈人进⾏行行审批操作。
authController.doAuth，是查看审批的流程节点、 AuthService.auth，是审批⽅方法⽤用于操

作节点流程状态。

3.2 测试结果

从测试结果上可以看到⼀一层层的由不不同的⼈人员进⾏行行审批，审批完成后到下⼀一个⼈人进⾏行行处理理。单看结
果是满⾜足我们的诉求，只不不过很难扩展和调整流程，相当于代码写的死死的。

五、责任链模式重构代码

接下来使⽤用装饰器器模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

责任链模式可以让各个服务模块更更加清晰，⽽而每⼀一个模块间可以通过 next的⽅方式进⾏行行获取。⽽而每⼀一

个 next是由继承的统⼀一抽象类实现的。最终所有类的职责可以动态的进⾏行行编排使⽤用，编排的过程可以

做成可配置化。

1. ⼯工程结构

 AuthService.auth("1000012", "1000998004813441");

 // 模拟⼀一级负责⼈人审批

 logger.info("测试结果：{}", JSON.toJSONString(authController.doAuth("⼩小

傅哥", "1000998004813441", new Date())));

 logger.info("测试结果：{}", "模拟⼀一级负责⼈人审批，段总");

 AuthService.auth("1000011", "1000998004813441");

 logger.info("测试结果：{}", "审批完成");

}

13

14

15

16

17

18

19

20

21

23:25:00.363 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结

果：{"code":"0001","info":"单号：1000998004813441 状态：待三级审批负责⼈人 王⼯工"}

23:25:00.366 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：模

拟三级负责⼈人审批，王⼯工

23:25:00.367 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结

果：{"code":"0001","info":"单号：1000998004813441 状态：待⼆二级审批负责⼈人 张经理理"}

23:25:00.367 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：模

拟⼆二级负责⼈人审批，张经理理

23:25:00.368 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结

果：{"code":"0001","info":"单号：1000998004813441 状态：待⼀一级审批负责⼈人 段总"}

23:25:00.368 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：模

拟⼀一级负责⼈人审批，段总

23:25:00.368 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：审

批完成

Process finished with exit code 0

1

2

3

4

5

6

7

8

9

责任链模式模型结构

上图是这个业务模型中责任链结构的核⼼心部分，通过三个实现了了统⼀一抽象类 AuthLink的不不同规

则，再进⾏行行责任编排模拟出⼀一条链路路。这个链路路就是业务中的责任链。
⼀一般在使⽤用责任链时候如果是场景⽐比较固定，可以通过写死到代码中进⾏行行初始化。但如果业务场景
经常变化可以做成xml配置的⽅方式进⾏行行处理理，也可以落到库⾥里里进⾏行行初始化操作。

2. 代码实现

2.1 责任链中返回对象定义

itstack-demo-design-13-02

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" impl
 $ #"" Level1AuthLink.java
 $ #"" Level2AuthLink.java
 $!"" Level3AuthLink.java
 #"" AuthInfo.java
 !"" AuthLink.java

1

2

3

4

5

6

7

8

9

10

11

public class AuthInfo {

 private String code;

 private String info = "";

1

2

3

4

5

这个类的是包装了了责任链处理理过程中返回结果的类，⽅方⾯面处理理每个责任链的返回信息。

2.2 链路路抽象类定义

这部分是责任链，链接起来的核⼼心部分。 AuthLink next，重点在于可以通过 next⽅方式获取下

⼀一个链路路需要处理理的节点。
levelUserId、 levelUserName，是责任链中的公⽤用信息，标记每⼀一个审核节点的⼈人员信息。

抽象类中定义了了⼀一个抽象⽅方法， abstract AuthInfo doAuth，这是每⼀一个实现者必须实现的

类，不不同的审核级别处理理不不同的业务。

 public AuthInfo(String code, String ...infos) {

 this.code = code;

 for (String str:infos){

 this.info = this.info.concat(str);

 }

 }

 // ...get/set

}

6

7

8

9

10

11

12

13

14

public abstract class AuthLink {

 protected Logger logger = LoggerFactory.getLogger(AuthLink.class);

 protected SimpleDateFormat f = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss");// 时间格式化

 protected String levelUserId; // 级别⼈人员ID

 protected String levelUserName; // 级别⼈人员姓名

 private AuthLink next; // 责任链

 public AuthLink(String levelUserId, String levelUserName) {

 this.levelUserId = levelUserId;

 this.levelUserName = levelUserName;

 }

 public AuthLink next() {

 return next;

 }

 public AuthLink appendNext(AuthLink next) {

 this.next = next;

 return this;

 }

 public abstract AuthInfo doAuth(String uId, String orderId, Date

authDate);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

2.3 三个审核实现类

Level1AuthLink

Level2AuthLink

public class Level1AuthLink extends AuthLink {

 public Level1AuthLink(String levelUserId, String levelUserName) {

 super(levelUserId, levelUserName);

 }

 public AuthInfo doAuth(String uId, String orderId, Date authDate) {

 Date date = AuthService.queryAuthInfo(levelUserId, orderId);

 if (null == date) {

 return new AuthInfo("0001", "单号：", orderId, " 状态：待⼀一级审批

负责⼈人 ", levelUserName);

 }

 AuthLink next = super.next();

 if (null == next) {

 return new AuthInfo("0000", "单号：", orderId, " 状态：⼀一级审批完

成负责⼈人", " 时间：", f.format(date), " 审批⼈人：", levelUserName);

 }

 return next.doAuth(uId, orderId, authDate);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

public class Level2AuthLink extends AuthLink {

 private Date beginDate = f.parse("2020-06-11 00:00:00");

 private Date endDate = f.parse("2020-06-20 23:59:59");

 public Level2AuthLink(String levelUserId, String levelUserName) throws

ParseException {

 super(levelUserId, levelUserName);

 }

 public AuthInfo doAuth(String uId, String orderId, Date authDate) {

 Date date = AuthService.queryAuthInfo(levelUserId, orderId);

 if (null == date) {

 return new AuthInfo("0001", "单号：", orderId, " 状态：待⼆二级审批

负责⼈人 ", levelUserName);

 }

 AuthLink next = super.next();

 if (null == next) {

 return new AuthInfo("0000", "单号：", orderId, " 状态：⼆二级审批完

成负责⼈人", " 时间：", f.format(date), " 审批⼈人：", levelUserName);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Level3AuthLink

如上三个类； Level1AuthLink、 Level2AuthLink、 Level3AuthLink，实现了了不不同的审核级

别处理理的简单逻辑。

 }

 if (authDate.before(beginDate) || authDate.after(endDate)) {

 return new AuthInfo("0000", "单号：", orderId, " 状态：⼆二级审批完

成负责⼈人", " 时间：", f.format(date), " 审批⼈人：", levelUserName);

 }

 return next.doAuth(uId, orderId, authDate);

 }

}

18

19

20

21

22

23

24

25

26

27

public class Level3AuthLink extends AuthLink {

 private Date beginDate = f.parse("2020-06-01 00:00:00");

 private Date endDate = f.parse("2020-06-25 23:59:59");

 public Level3AuthLink(String levelUserId, String levelUserName) throws

ParseException {

 super(levelUserId, levelUserName);

 }

 public AuthInfo doAuth(String uId, String orderId, Date authDate) {

 Date date = AuthService.queryAuthInfo(levelUserId, orderId);

 if (null == date) {

 return new AuthInfo("0001", "单号：", orderId, " 状态：待三级审批

负责⼈人 ", levelUserName);

 }

 AuthLink next = super.next();

 if (null == next) {

 return new AuthInfo("0000", "单号：", orderId, " 状态：三级审批负

责⼈人完成", " 时间：", f.format(date), " 审批⼈人：", levelUserName);

 }

 if (authDate.before(beginDate) || authDate.after(endDate)) {

 return new AuthInfo("0000", "单号：", orderId, " 状态：三级审批负

责⼈人完成", " 时间：", f.format(date), " 审批⼈人：", levelUserName);

 }

 return next.doAuth(uId, orderId, authDate);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

例例如第⼀一个审核类中会先判断是否审核通过，如果没有审核通过则返回结果给调⽤用⽅方，引导去审
核。（这⾥里里简单模拟审核后有时间信息不不为空，作为判断条件）
判断完成后获取下⼀一个审核节点； super.next();，如果不不存在下⼀一个节点，则直接返回结果。

之后是根据不不同的业务时间段进⾏行行判断是否需要，⼆二级和⼀一级的审核。
最后返回下⼀一个审核结果； next.doAuth(uId, orderId, authDate);，有点像递归调⽤用。

3. 测试验证

3.1 编写测试类

这⾥里里包括最核⼼心的责任链创建，实际的业务中会包装到控制层； AuthLink authLink = new

Level3AuthLink("1000013", "王⼯工") .appendNext(new Level2AuthLink("1000012",

"张经理理") .appendNext(new Level1AuthLink("1000011", "段总"))); 通过把不不同的责任节
点进⾏行行组装，构成⼀一条完整业务的责任链。
接下⾥里里不不断的执⾏行行查看审核链路路 authLink.doAuth(...)，通过返回结果对数据进⾏行行3、2、1级
负责⼈人审核，直⾄至最后审核全部完成。

3.2 测试结果

@Test

public void test_AuthLink() throws ParseException {

 AuthLink authLink = new Level3AuthLink("1000013", "王⼯工")

 .appendNext(new Level2AuthLink("1000012", "张经理理")

 .appendNext(new Level1AuthLink("1000011", "段总")));

 logger.info("测试结果：{}", JSON.toJSONString(authLink.doAuth("⼩小傅哥",

"1000998004813441", new Date())));

 // 模拟三级负责⼈人审批

 AuthService.auth("1000013", "1000998004813441");

 logger.info("测试结果：{}", "模拟三级负责⼈人审批，王⼯工");

 logger.info("测试结果：{}", JSON.toJSONString(authLink.doAuth("⼩小傅哥",

"1000998004813441", new Date())));

 // 模拟⼆二级负责⼈人审批

 AuthService.auth("1000012", "1000998004813441");

 logger.info("测试结果：{}", "模拟⼆二级负责⼈人审批，张经理理");

 logger.info("测试结果：{}", JSON.toJSONString(authLink.doAuth("⼩小傅哥",

"1000998004813441", new Date())));

 // 模拟⼀一级负责⼈人审批

 AuthService.auth("1000011", "1000998004813441");

 logger.info("测试结果：{}", "模拟⼀一级负责⼈人审批，段总");

 logger.info("测试结果：{}", JSON.toJSONString(authLink.doAuth("⼩小傅哥",

"1000998004813441", new Date())));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

从上述的结果可以看到我们的责任链已经⽣生效，按照责任链的结构⼀一层层审批，直⾄至最后输出审批
结束到⼀一级完成的结果。
这样责任链的设计⽅方式可以⽅方便便的进⾏行行扩展和维护，也把if语句句⼲干掉了了。

六、总结

从上⾯面代码从if语句句重构到使⽤用责任链模式开发可以看到，我们的代码结构变得清晰⼲干净了了，也解
决了了⼤大量量if语句句的使⽤用。并不不是if语句句不不好，只不不过if语句句并不不适合做系统流程设计，但是在做判断
和⾏行行为逻辑处理理中还是⾮非常可以使⽤用的。
在我们前⾯面学习结构性模式中讲到过组合模式，它像是⼀一颗组合树⼀一样，我们搭建出⼀一个流程决策
树。其实这样的模式也是可以和责任链模型进⾏行行组合扩展使⽤用，⽽而这部分的重点在于如何关联链路路
的关联，最终的执⾏行行都是在执⾏行行在中间的关系链。
责任链模式很好的处理理单⼀一职责和开闭原则，简单了了耦合也使对象关系更更加清晰，⽽而且外部的调⽤用
⽅方并不不需要关⼼心责任链是如何进⾏行行处理理的(以上程序中可以把责任链的组合进⾏行行包装，在提供给外
部使⽤用)。但除了了这些优点外也需要是适当的场景才进⾏行行使⽤用，避免造成性能以及编排混乱调试测
试疏漏漏问题。

第 2 节：命令模式

23:49:46.585 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结

果：{"code":"0001","info":"单号：1000998004813441 状态：待三级审批负责⼈人 王⼯工"}

23:49:46.590 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：模

拟三级负责⼈人审批，王⼯工

23:49:46.590 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结

果：{"code":"0001","info":"单号：1000998004813441 状态：待⼆二级审批负责⼈人 张经理理"}

23:49:46.590 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：模

拟⼆二级负责⼈人审批，张经理理

23:49:46.590 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结

果：{"code":"0001","info":"单号：1000998004813441 状态：待⼀一级审批负责⼈人 段总"}

23:49:46.590 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：模

拟⼀一级负责⼈人审批，段总

23:49:46.590 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结

果：{"code":"0000","info":"单号：1000998004813441 状态：⼀一级审批完成负责⼈人 时间：

2020-06-18 23:49:46 审批⼈人：段总"}

Process finished with exit code 0

1

2

3

4

5

6

7

8

9

⼯工程 描述

itstack-demo-design-14-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-14-02 通过设计模式优化代码结构，增加扩展性和维护性

持之以恒的重要性

初学编程往往都很懵，⼏几乎在学习的过程中会遇到各种各样的问题，哪怕别⼈人那运⾏行行好好的代码，但你
照着写完就报错。但好在你坚持住了了，否则你可能看不不到这篇⽂文章。时间和成⻓长就是相互关联着，你在
哪条路路上坚持⾛走的久，就能看⻅见那条的终点有多美，但如果你浪费了了⼀一次⼜又⼀一次努⼒力力的机会，那么你也
会同样错过很多机遇，因为你的路路换了了。坚持学习、努⼒力力成⻓长，持以恒的付出⼀一定会有所收获。

学习⽅方法的重要性

不不会学习往往会耽误很多时间，⼜又没有可观的收成。但不不会学习有时候是因为懒造成的，尤其是学习视
频、书籍资料料、技术⽂文档等，如果只是看了了却不不是实际操作验证，那么真的很难把别⼈人的知识让⾃自⼰己吸
收，即使是当时感觉会了了也很快就会忘记。时⽽而也经常会有⼈人找到你说；“这个我不不知道，你先告诉我，
过后我就学。”但过后你学了了吗？

你愿意为⼀一个知识盲区付出多⻓长时间

你⼼心⾥里里时⽽而会蹦出这样的词吗；太难了了我不不会、找个⼈人帮⼀一下吧、放弃了了放弃了了，其实谁都可能遇到很

不不好解决的问题，也是可以去问去咨询的。但，如果在这之前你没有在⾃自⼰己的⼤大脑中反复的寻找答案，
那么你的⼤大脑中就不不会形成⼀一个凸点的知识树，缺少了了这个学习过程也就缺少了了查阅各种资料料给⾃自⼰己⼤大
脑填充知识的机会，哪怕是问到了了答案最终也会因时间流逝⽽而忘记。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、命令模式介绍

https://bugstack.cn/assets/images/qrcode.png

命令模式在我们通常的互联⽹网开发中相对来说⽤用的⽐比较少，但这样的模式在我们的⽇日常中却经常使⽤用
到，那就是 Ctrl+C、 Ctrl+V。当然如果你开发过⼀一些桌⾯面应⽤用，也会感受到这样设计模式的应⽤用场

景。从这样的模式感受上，可以想到这是把逻辑实现与操作请求进⾏行行分离，降低耦合⽅方便便扩展。

命令模式是⾏行行为模式中的⼀一种，以数据驱动的⽅方式将命令对象，可以使⽤用构造函数的⽅方式传递给调⽤用

者。调⽤用者再提供相应的实现为命令执⾏行行提供操作⽅方法。可能会感觉这部分有⼀一些饶，可以通过对代码
的实现进⾏行行理理解，在通过实操来熟练。

在这个设计模式的实现过程中有如下⼏几个⽐比较重要的点；

1. 抽象命令类；声明执⾏行行命令的接⼝口和⽅方法
2. 具体的命令实现类；接⼝口类的具体实现，可以是⼀一组相似的⾏行行为逻辑
3. 实现者；也就是为命令做实现的具体实现类
4. 调⽤用者；处理理命令、实现的具体操作者，负责对外提供命令服务

三、案例例场景模拟

在这个案例例中我们模拟在餐厅中点餐交给厨师 ..烹饪的场景

命令场景的核⼼心的逻辑是调⽤用⽅方与不不需要去关⼼心具体的逻辑实现，在这个场景中也就是点餐⼈人员只需要
把需要点的各种菜系交个⼩小⼆二就可以，⼩小⼆二再把各项菜品交给各个厨师进⾏行行烹饪。也就是点餐⼈人员不不需

要跟各个厨师交流，只需要在统⼀一的环境⾥里里下达命令就可以。

在这个场景中可以看到有不不同的菜品；⼭山东（鲁菜）、四川（川菜）、江苏（苏菜）、⼴广东（粤菜）、
福建（闽菜）、浙江（浙菜）、湖南（湘菜），每种菜品都会有不不同的厨师 /进⾏行行烹饪。⽽而客户并不不会
去关⼼心具体是谁烹饪，厨师也不不会去关⼼心谁点的餐。客户只关⼼心早点上菜，厨师只关⼼心还有多少个菜要
做。⽽而这中间的衔接的过程，由⼩小⼆二完成。

那么在这样的⼀一个模拟场景下，可以先思考 "哪部分是命令模式的拆解，哪部分是命令的调⽤用者以及命
令的实现逻辑。

四、⽤用⼀一坨坨代码实现

不不考虑设计模式的情况下，在做这样⼀一个点单系统，有⼀一个类就够了了

像是这样⼀一个复杂的场景，如果不不知道设计模式直接开发，也是可以达到⽬目的的。但对于后续的各项的
菜品扩展、厨师实现以及如何调⽤用上会变得⾮非常耦合难以扩展。

1. ⼯工程结构

这⾥里里只有⼀一个饭店⼩小⼆二的类，通过这样的⼀一个类实现整个不不同菜品的点单逻辑。

2. 代码实现

itstack-demo-design-14-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" XiaoEr.java

1

2

3

4

5

6

在这个类的实现中提供了了两个⽅方法，⼀一个⽅方法⽤用于点单添加菜品 order()，另外⼀一个⽅方法展示菜

品的信息 placeOrder()。

从上⾯面可以看到有⽐比较多的if语句句判断类型进⾏行行添加菜品，那么对于这样的代码后续就需要⼤大量量的
经历进⾏行行维护，同时可能实际的逻辑要⽐比这复杂的多。都写在这样⼀一个类⾥里里会变得耦合的⾮非常严
重。

五、命令模式重构代码

public class XiaoEr {

 private Logger logger = LoggerFactory.getLogger(XiaoEr.class);

 private Map<Integer, String> cuisineMap = new

ConcurrentHashMap<Integer, String>();

 public void order(int cuisine) {

 // ⼴广东（粤菜）

 if (1 == cuisine) {

 cuisineMap.put(1, "⼴广东厨师，烹饪鲁菜，宫廷最⼤大菜系，以孔府⻛风味为⻰龙

头");

 }

 // 江苏（苏菜）

 if (2 == cuisine) {

 cuisineMap.put(2, "江苏厨师，烹饪苏菜，宫廷第⼆二⼤大菜系，古今国宴上最受⼈人

欢迎的菜系。");

 }

 // ⼭山东（鲁菜）

 if (3 == cuisine) {

 cuisineMap.put(3, "⼭山东厨师，烹饪鲁菜，宫廷最⼤大菜系，以孔府⻛风味为⻰龙

头.");

 }

 // 四川（川菜）

 if (4 == cuisine) {

 cuisineMap.put(4, "四川厨师，烹饪川菜，中国最有特⾊色的菜系，也是⺠民间最⼤大

菜系。");

 }

 }

 public void placeOrder() {

 logger.info("菜单：{}", JSON.toJSONString(cuisineMap));

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

接下来使⽤用命令模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

命令模式可以将上述的模式拆解三层⼤大块，命令、命令实现者、命令的调⽤用者，当有新的菜品或者厨师
扩充时候就可以在指定的类结构下进⾏行行实现添加即可，外部的调⽤用也会⾮非常的容易易扩展。

1. ⼯工程结构

命令模式模型结构

itstack-demo-design-14-02

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" cook
 $ $ #"" impl
 $ $ $ #"" GuangDongCook.java
 $ $ $ #"" JiangSuCook.java
 $ $ $ #"" ShanDongCook.java
 $ $ $!"" SiChuanCook.java
 $ $!"" ICook.java
 $ #"" cuisine
 $ $ #"" impl
 $ $ $ #"" GuangDoneCuisine.java
 $ $ $ #"" JiangSuCuisine.java
 $ $ $ #"" ShanDongCuisine.java
 $ $ $!"" SiChuanCuisine.java
 $ $!"" ICuisine.java
 $!"" XiaoEr.java
 !"" test
 !"" java
 !"" org.itstack.demo.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

从上图可以看到整体分为三⼤大块；命令实现(菜品)、逻辑实现(厨师)、调⽤用者(⼩小⼆二)，以上这三⾯面的
实现就是命令模式的核⼼心内容。
经过这样的拆解就可以⾮非常⽅方⾯面的扩展菜品、厨师，对于调⽤用者来说这部分都是松耦合的，在整体
的框架下可以⾮非常容易易加⼊入实现逻辑。

2. 代码实现

2.1 抽象命令定义(菜品接⼝口)

这是命令接⼝口类的定义，并提供了了⼀一个烹饪⽅方法。后⾯面会选四种菜品进⾏行行实现。

2.2 具体命令实现(四种菜品)

/**

 * 博客：https://bugstack.cn - 沉淀、分享、成⻓长，让⾃自⼰己和他⼈人都能有所收获！

 * 公众号：bugstack⾍虫洞洞栈
 * Create by ⼩小傅哥(fustack) @2020

 *

 * 菜系

 * 01、⼭山东（鲁菜）——宫廷最⼤大菜系，以孔府⻛风味为⻰龙头。

 * 02、四川（川菜）——中国最有特⾊色的菜系，也是⺠民间最⼤大菜系。

 * 03、江苏（苏菜）——宫廷第⼆二⼤大菜系，古今国宴上最受⼈人欢迎的菜系。
 * 04、⼴广东（粤菜）——国内⺠民间第⼆二⼤大菜系，国外最有影响⼒力力的中国菜系，可以代表中国。

 * 05、福建（闽菜）——客家菜的代表菜系。

 * 06、浙江（浙菜）——中国最古⽼老老的菜系之⼀一，宫廷第三⼤大菜系。

 * 07、湖南（湘菜）——⺠民间第三⼤大菜系。

 * 08、安徽（徽菜）——徽州⽂文化的典型代表。
 */

public interface ICuisine {

 void cook(); // 烹调、制作

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

⼴广东（粤菜）

江苏（苏菜）

⼭山东（鲁菜）

public class GuangDoneCuisine implements ICuisine {

 private ICook cook;

 public GuangDoneCuisine(ICook cook) {

 this.cook = cook;

 }

 public void cook() {

 cook.doCooking();

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

public class JiangSuCuisine implements ICuisine {

 private ICook cook;

 public JiangSuCuisine(ICook cook) {

 this.cook = cook;

 }

 public void cook() {

 cook.doCooking();

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

public class ShanDongCuisine implements ICuisine {

 private ICook cook;

 public ShanDongCuisine(ICook cook) {

 this.cook = cook;

 }

 public void cook() {

 cook.doCooking();

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

四川（川菜）

以上是四种菜品的实现，在实现的类中都有添加了了⼀一个厨师类(ICook)，并通过这个类提供的⽅方法
进⾏行行操作命令(烹饪菜品) cook.doCooking()。
命令的实现过程可以是按照逻辑进⾏行行添加补充，⽬目前这⾥里里抽象的⽐比较简单，只是模拟⼀一个烹饪的过
程，相当于同时厨师进⾏行行菜品烹饪。

2.3 抽象实现者定义(厨师接⼝口)

这⾥里里定义的是具体的为命令的实现者，这⾥里里也就是菜品对应的厨师烹饪的指令实现。

2.4 实现者具体实现(四类厨师)

粤菜，厨师

苏菜，厨师

public class SiChuanCuisine implements ICuisine {

 private ICook cook;

 public SiChuanCuisine(ICook cook) {

 this.cook = cook;

 }

 public void cook() {

 cook.doCooking();

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

public interface ICook {

 void doCooking();

}

1

2

3

4

5

public class GuangDongCook implements ICook {

 private Logger logger = LoggerFactory.getLogger(ICook.class);

 public void doCooking() {

 logger.info("⼴广东厨师，烹饪鲁菜，宫廷最⼤大菜系，以孔府⻛风味为⻰龙头");

 }

}

1

2

3

4

5

6

7

8

9

鲁菜，厨师

苏菜，厨师

这⾥里里是四类不不同菜品的厨师

/

，在这个实现的过程是模拟打了了⽇日志，相当于通知了了厨房⾥里里具体的
厨师进⾏行行菜品烹饪。
从以上可以看到，当我们需要进⾏行行扩从的时候是可以⾮非常⽅方便便的进⾏行行添加的，每⼀一个类都具备了了单
⼀一职责原则。

2.5 调⽤用者(⼩小⼆二)

public class JiangSuCook implements ICook {

 private Logger logger = LoggerFactory.getLogger(ICook.class);

 public void doCooking() {

 logger.info("江苏厨师，烹饪苏菜，宫廷第⼆二⼤大菜系，古今国宴上最受⼈人欢迎的菜

系。");
 }

}

1

2

3

4

5

6

7

8

9

public class ShanDongCook implements ICook {

 private Logger logger = LoggerFactory.getLogger(ICook.class);

 public void doCooking() {

 logger.info("⼭山东厨师，烹饪鲁菜，宫廷最⼤大菜系，以孔府⻛风味为⻰龙头");

 }

}

1

2

3

4

5

6

7

8

9

public class SiChuanCook implements ICook {

 private Logger logger = LoggerFactory.getLogger(ICook.class);

 public void doCooking() {

 logger.info("四川厨师，烹饪川菜，中国最有特⾊色的菜系，也是⺠民间最⼤大菜系。");

 }

}

1

2

3

4

5

6

7

8

9

public class XiaoEr {

 private Logger logger = LoggerFactory.getLogger(XiaoEr.class);

 private List<ICuisine> cuisineList = new ArrayList<ICuisine>();

1

2

3

4

5

6

在调⽤用者的具体实现中，提供了了菜品的添加和菜单执⾏行行烹饪。这个过程是命令模式的具体调⽤用，通
过外部将菜品和厨师传递进来⽽而进⾏行行具体的调⽤用。

3. 测试验证

3.1 编写测试类

这⾥里里可以主要观察菜品与厨师的组合； new GuangDoneCuisine(new GuangDongCook());，

每⼀一个具体的命令都拥有⼀一个对应的实现类，可以进⾏行行组合。
当菜品和具体的实现定义完成后，由⼩小⼆二进⾏行行操作点
单， xiaoEr.order(guangDoneCuisine);，这⾥里里分别添加了了四种菜品，给⼩小⼆二。

最后是下单，这个是具体命令实现的操作，相当于把⼩小⼆二⼿手⾥里里的菜单传递给厨师。当然这⾥里里也可以
提供删除和撤销，也就是客户取消了了⾃自⼰己的某个菜品。

3.2 测试结果

 public void order(ICuisine cuisine) {

 cuisineList.add(cuisine);

 }

 public synchronized void placeOrder() {

 for (ICuisine cuisine : cuisineList) {

 cuisine.cook();

 }

 cuisineList.clear();

 }

}

7

8

9

10

11

12

13

14

15

16

17

18

@Test

public void test(){

 // 菜系 + 厨师；⼴广东（粤菜）、江苏（苏菜）、⼭山东（鲁菜）、四川（川菜）

 ICuisine guangDoneCuisine = new GuangDoneCuisine(new GuangDongCook());

 JiangSuCuisine jiangSuCuisine = new JiangSuCuisine(new JiangSuCook());

 ShanDongCuisine shanDongCuisine = new ShanDongCuisine(new

ShanDongCook());

 SiChuanCuisine siChuanCuisine = new SiChuanCuisine(new SiChuanCook());

 // 点单

 XiaoEr xiaoEr = new XiaoEr();

 xiaoEr.order(guangDoneCuisine);

 xiaoEr.order(jiangSuCuisine);

 xiaoEr.order(shanDongCuisine);

 xiaoEr.order(siChuanCuisine);

 // 下单

 xiaoEr.placeOrder();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

从上⾯面的测试结果可以看到，我们已经交给调⽤用者(⼩小⼆二)的点单，由不不同的厨师具体实现(烹饪)。
此外当我们需要不不同的菜品时候或者修改时候都可以⾮非常⽅方便便的添加和修改，在具备单⼀一职责的类
下，都可以⾮非常⽅方便便的扩展。

六、总结

从以上的内容和例例⼦子可以感受到，命令模式的使⽤用场景需要分为三个⽐比较⼤大的块；命令、实现、

调⽤用者，⽽而这三块内容的拆分也是选择适合场景的关键因素，经过这样的拆分可以让逻辑具备单

⼀一职责的性质，便便于扩展。
通过这样的实现⽅方式与if语句句相⽐比，降低了了耦合性也⽅方便便其他的命令和实现的扩展。但同时这样的
设计模式也带来了了⼀一点问题，就是在各种命令与实现的组合下，会扩展出很多的实现类，需要进⾏行行
管理理。
设计模式的学习⼀一定要勤勤加练习，哪怕最开始是模仿实现也是可以的，多次的练习后再去找到⼀一些
可以优化的场景，并逐步运⽤用到⾃自⼰己的开发中。提升⾃自⼰己对代码的设计感觉，让代码结构更更加清晰
易易扩展。

第 3 节：迭代器器模式

相信相信的⼒力力量量！

从懵懂的少年年，到拿起键盘，可以写⼀一个HelloWorld。多数⼈人在这并不不会感觉有多难，也不不会认为做不不
出来。因为这样的例例⼦子，有⽼老老师的指导、有书本的例例⼦子、有前⼈人的经验。但随着你的开发时间越来越
⻓长，要解决更更复杂的问题或者技术创新，因此在⽹网上搜了了⼏几天⼏几夜都没有答案，这个时候是否想过放
弃，还是⼀一直坚持不不断的尝试⼀一点点完成⾃自⼰己⼼心⾥里里要的结果。往往这种没有前⻋车之鉴需要⾃自⼰己解决问题
的时候，可能真的会折磨到要崩溃，但你要愿意执着、愿意倔强，愿意选择相信相信的⼒力力量量，就⼀一定能
解决。哪怕解决不不了了，也可以在这条路路上摸索出其他更更多的收获，为后续前进的道路路填充好垫脚⽯石。

22:12:13.056 [main] INFO org.itstack.demo.design.cook.ICook - ⼴广东厨师，烹饪

鲁菜，宫廷最⼤大菜系，以孔府⻛风味为⻰龙头
22:12:13.059 [main] INFO org.itstack.demo.design.cook.ICook - 江苏厨师，烹饪

苏菜，宫廷第⼆二⼤大菜系，古今国宴上最受⼈人欢迎的菜系。

22:12:13.059 [main] INFO org.itstack.demo.design.cook.ICook - ⼭山东厨师，烹饪

鲁菜，宫廷最⼤大菜系，以孔府⻛风味为⻰龙头

22:12:13.059 [main] INFO org.itstack.demo.design.cook.ICook - 四川厨师，烹饪

川菜，中国最有特⾊色的菜系，也是⺠民间最⼤大菜系。

Process finished with exit code 0

1

2

3

4

5

6

⼯工程 描述

itstack-demo-design-15-00 开发树形组织架构关系迭代器器

时间紧是写垃圾代码的理理由？

拧螺丝？Ctrl+C、Ctrl+V？贴膏药⼀一样写代码？没有办法，没有时间，往往真的是借⼝口，胸中没⽤用笔
墨墨，才只能凑合。难道⼀一定是好好写代码就浪费时间，拼凑CRUD就快吗，根本不不可能的。因为不不会，
没⽤用实操过，很少架构出全场景的设计，才很难写出优良的代码。多增强⾃自身的编码(武术)修为，在各
种编码场景中让⾃自⼰己变得⽼老老练，才好应对紧急情况下的需求开发和⼈人员安排。就像韩信⼀一样有谋有略略，
才能执掌百万雄兵。

不不要只是做个⼯工具⼈人！

因为⽇日常的编写简单业务需求，导致⾃自⼰己像个⼯工具⼈人⼀一样，⽇日久天⻓长的也就很少去深⼊入学习更更多技术
栈。看⻅见有⼯工具、有组件、有框架，拿来就⽤用⽤用，反正没什什么体量量也不不会出什什么问题。但如果你想要更更
多的收⼊入，哪怕是重复的造轮⼦子，你也要去尝试造⼀一个，就算不不⽤用到⽣生产，⾃自⼰己玩玩总可以吧。有些事
情只有⾃自⼰己经历过，才能有最深的感触，参与过实践过，才好总结点评学习。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程⼀一个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、迭代器器模式介绍

https://bugstack.cn/assets/images/qrcode.png

迭代器器模式，常⻅见的就是我们⽇日常使⽤用的 iterator遍历。虽然这个设计模式在我们的实际业务开发中

的场景并不不多，但却⼏几乎每天都要使⽤用 jdk为我们提供的 list集合遍历。另外增强的for循环虽然是循
环输出数据，但是他不不是迭代器器模式。迭代器器模式的特点是实现 Iterable接⼝口，通过 next的⽅方式获

取集合元素，同时具备对元素的删除等操作。⽽而增强的for循环是不不可以的。

这种设计模式的优点是可以让我们以相同的⽅方式，遍历不不同的数据结构元素，这些数据结构包括；数

组、链表、树等，⽽而⽤用户在使⽤用遍历的时候并不不需要去关⼼心每⼀一种数据结构的遍历处理理逻辑，从让使

⽤用变得统⼀一易易⽤用。

三、案例例场景模拟

在本案例例中我们模拟迭代遍历输出公司中树形结构的组织架构关系中雇员列列表

⼤大部分公司的组织架构都是⾦金金字塔结构，也就这种树形结构，分为⼀一级、⼆二级、三级等部⻔门，每个组织
部⻔门由雇员填充，最终体现出⼀一个整体的树形组织架构关系。

⼀一般我们常⽤用的遍历就是jdk默认提供的⽅方法，对list集合遍历。但是对于这样的偏业务特性较⼤大的树形
结构，如果需要使⽤用到遍历，那么就可以⾃自⼰己来实现。接下来我们会把这个组织层次关系通过树形数据
结构来实现，并完成迭代器器功能。

四、迭代器器模式遍历组织结构

在实现迭代器器模式之前可以先阅读下 java中 list⽅方法关于 iterator的实现部分，⼏几乎所有的迭代器器

开发都会按照这个模式来实现，这个模式主要分为以下⼏几块；

1. Collection，集合⽅方法部分⽤用于对⾃自定义的数据结构添加通⽤用⽅方法； add、 remove、 iterator

等核⼼心⽅方法。
2. Iterable，提供获取迭代器器，这个接⼝口类会被 Collection继承。

3. Iterator，提供了了两个⽅方法的定义； hasNext、 next，会在具体的数据结构中写实现⽅方式。

除了了这样通⽤用的迭代器器实现⽅方式外，我们的组织关系结构树，是由节点和节点间的关系链构成，所以会
⽐比上述的内容多⼀一些⼊入参。

1. ⼯工程结构

迭代器器模式模型结构

以上是我们⼯工程类图的模型结构，左侧是对迭代器器的定义，右侧是在数据结构中实现迭代器器功能。
关于左侧部分的实现与jdk中的⽅方式是⼀一样的，所以在学习的过程中可以互相参考，也可以⾃自⼰己扩
展学习。
另外这个遍历⽅方式⼀一个树形结构的深度遍历，为了了可以更更加让学习的⼩小伙伴容易易理理解，这⾥里里我实现
了了⼀一种⽐比较简单的树形结构深度遍历⽅方式。后续读者也可以把遍历扩展为横向遍历也就是宽度遍
历。

2. 代码实现

itstack-demo-design-15-00

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" group
 $ $ #"" Employee.java
 $ $ #"" GroupStructure.java
 $ $!"" Link.java
 $!"" lang
 $ #"" Collection.java
 $ #"" Iterable.java
 $!"" Iterator.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

2.1 雇员实体类

这是⼀一个简单的雇员类，也就是公司员⼯工的信息类，包括必要的信息；id、姓名、备注。

2.2 树节点链路路

这个类⽤用于描述结构树中的各个节点之间的关系链，也就是 A to B、 B to C、 B to D，以此

描述出⼀一套完整的树组织结构。

2.3 迭代器器定义

这⾥里里的这个类和 java的 jdk中提供的是⼀一样的，这样也⽅方⾯面后续读者可以对照 list的

Iterator进⾏行行源码学习。

⽅方法描述； hasNext，判断是否有下⼀一个元素、 next，获取下⼀一个元素。这个在 list的遍历中

是经常⽤用到的。

2.4 可迭代接⼝口定义

/**

 * 雇员

 */

public class Employee {

 private String uId; // ID

 private String name; // 姓名

 private String desc; // 备注

 // ...get/set

}

1

2

3

4

5

6

7

8

9

10

11

/**

 * 树节点链路路

 */

public class Link {

 private String fromId; // 雇员ID

 private String toId; // 雇员ID

 // ...get/set

}

1

2

3

4

5

6

7

8

9

10

public interface Iterator<E> {

 boolean hasNext();

 E next();

}

1

2

3

4

5

6

7

这个接⼝口中提供了了上⾯面迭代器器的实现 Iterator的获取，也就是后续在⾃自⼰己的数据结构中需要实现

迭代器器的功能并交给 Iterable，由此让外部调⽤用⽅方进⾏行行获取使⽤用。

2.5 集合功能接⼝口定义

这⾥里里我们定义集合操作接⼝口； Collection，同时继承了了另外⼀一个接⼝口 Iterable的⽅方法

iterator()。这样后续谁来实现这个接⼝口，就需要实现上述定义的⼀一些基本功能；添加元素、

删除元素、遍历。

同时你可能注意到这⾥里里定义了了两个泛型 <E, L>，因为我们的数据结构⼀一个是⽤用于添加元素，另外

⼀一个是⽤用于添加树节点的链路路关系。

2.6 (核⼼心)迭代器器功能实现

public interface Iterable<E> {

 Iterator<E> iterator();

}

1

2

3

4

5

public interface Collection<E, L> extends Iterable<E> {

 boolean add(E e);

 boolean remove(E e);

 boolean addLink(String key, L l);

 boolean removeLink(String key);

 Iterator<E> iterator();

}

1

2

3

4

5

6

7

8

9

10

11

12

13

public class GroupStructure implements Collection<Employee, Link> {

 private String groupId;

 // 组织ID，也是⼀一个组织链的头部ID

 private String groupName;

 // 组织名称

 private Map<String, Employee> employeeMap = new

ConcurrentHashMap<String, Employee>(); // 雇员列列表

 private Map<String, List<Link>> linkMap = new

ConcurrentHashMap<String, List<Link>>(); // 组织架构关系；id->list
 private Map<String, String> invertedMap = new

ConcurrentHashMap<String, String>(); // 反向关系链

 public GroupStructure(String groupId, String groupName) {

 this.groupId = groupId;

1

2

3

4

5

6

7

8

9

10

 this.groupName = groupName;

 }

 public boolean add(Employee employee) {

 return null != employeeMap.put(employee.getuId(), employee);

 }

 public boolean remove(Employee o) {

 return null != employeeMap.remove(o.getuId());

 }

 public boolean addLink(String key, Link link) {

 invertedMap.put(link.getToId(), link.getFromId());

 if (linkMap.containsKey(key)) {

 return linkMap.get(key).add(link);

 } else {

 List<Link> links = new LinkedList<Link>();

 links.add(link);

 linkMap.put(key, links);

 return true;

 }

 }

 public boolean removeLink(String key) {

 return null != linkMap.remove(key);

 }

 public Iterator<Employee> iterator() {

 return new Iterator<Employee>() {

 HashMap<String, Integer> keyMap = new HashMap<String, Integer>

();

 int totalIdx = 0;

 private String fromId = groupId; // 雇员ID，From

 private String toId = groupId; // 雇员ID，To

 public boolean hasNext() {

 return totalIdx < employeeMap.size();

 }

 public Employee next() {

 List<Link> links = linkMap.get(toId);

 int cursorIdx = getCursorIdx(toId);

 // 同级节点扫描

 if (null == links) {

 cursorIdx = getCursorIdx(fromId);

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

以上的这部分代码稍微有点⻓长，主要包括了了对元素的添加和删除。另外最重要的是对遍历的实现
new Iterator<Employee>。

添加和删除元素相对来说⽐比较简单，使⽤用了了两个map数组结构进⾏行行定义；雇员列列表、组织架构关
系；id->list。当元素添加元素的时候，会分别在不不同的⽅方法中向 map结构中进⾏行行填充指向关系

(A->B)，也就构建出了了我们的树形组织关系。

迭代器器实现思路路

1. 这⾥里里的树形结构我们需要做的是深度遍历，也就是左侧的⼀一直遍历到最深节点。
2. 当遍历到最深节点后，开始遍历最深节点的横向节点。
3. 当横向节点遍历完成后则向上寻找横向节点，直⾄至树结构全部遍历完成。

3. 测试验证

 links = linkMap.get(fromId);

 }

 // 上级节点扫描

 while (cursorIdx > links.size() - 1) {

 fromId = invertedMap.get(fromId);

 cursorIdx = getCursorIdx(fromId);

 links = linkMap.get(fromId);

 }

 // 获取节点
 Link link = links.get(cursorIdx);

 toId = link.getToId();

 fromId = link.getFromId();

 totalIdx++;

 // 返回结果

 return employeeMap.get(link.getToId());

 }

 // 给每个层级定义宽度遍历进度

 public int getCursorIdx(String key) {

 int idx = 0;

 if (keyMap.containsKey(key)) {

 idx = keyMap.get(key);

 keyMap.put(key, ++idx);

 } else {

 keyMap.put(key, idx);

 }

 return idx;

 }

 };

 }

}

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

3.1 编写测试类

3.2 测试结果

@Test

public void test_iterator() {

 // 数据填充

 GroupStructure groupStructure = new GroupStructure("1", "⼩小傅哥");

 // 雇员信息
 groupStructure.add(new Employee("2", "花花", "⼆二级部⻔门"));

 groupStructure.add(new Employee("3", "⾖豆包", "⼆二级部⻔门"));

 groupStructure.add(new Employee("4", "蹦蹦", "三级部⻔门"));

 groupStructure.add(new Employee("5", "⼤大烧", "三级部⻔门"));

 groupStructure.add(new Employee("6", "⻁虎哥", "四级部⻔门"));

 groupStructure.add(new Employee("7", "玲姐", "四级部⻔门"));
 groupStructure.add(new Employee("8", "秋雅", "四级部⻔门"));

 // 节点关系 1->(1,2) 2->(4,5)

 groupStructure.addLink("1", new Link("1", "2"));

 groupStructure.addLink("1", new Link("1", "3"));

 groupStructure.addLink("2", new Link("2", "4"));

 groupStructure.addLink("2", new Link("2", "5"));

 groupStructure.addLink("5", new Link("5", "6"));

 groupStructure.addLink("5", new Link("5", "7"));

 groupStructure.addLink("5", new Link("5", "8"));

 Iterator<Employee> iterator = groupStructure.iterator();

 while (iterator.hasNext()) {

 Employee employee = iterator.next();

 logger.info("{}，雇员 Id：{} Name：{}", employee.getDesc(),

employee.getuId(), employee.getName());

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

从遍历的结果可以看到，我们是顺着树形结构的深度开始遍历，⼀一直到右侧的节点3；雇员 Id：
2、雇员 Id：4...雇员 Id：3

五、总结

迭代器器的设计模式从以上的功能实现可以看到，满⾜足了了单⼀一职责和开闭原则，外界的调⽤用⽅方也不不需
要知道任何⼀一个不不同的数据结构在使⽤用上的遍历差异。可以⾮非常⽅方便便的扩展，也让整个遍历变得更更
加⼲干净整洁。
但从结构的实现上可以看到，迭代器器模式的实现过程相对来说是⽐比较负责的，类的实现上也扩增了了
需要外部定义的类，使得遍历与原数据结构分开。虽然这是⽐比较麻烦的，但可以看到在使⽤用java的
jdk时候，迭代器器的模式还是很好⽤用的，可以⾮非常⽅方便便扩展和升级。
以上的设计模式场景实现过程可能对新⼈人有⼀一些不不好理理解点，包括；迭代器器三个和接⼝口的定义、树
形结构的数据关系、树结构深度遍历思路路。这些都需要反复实现练习才能深⼊入的理理解，事必躬亲，
亲历亲为，才能让⾃自⼰己掌握这些知识。

第 4 节：中介者模式

22:23:37.166 [main] INFO org.itstack.demo.design.test.ApiTest - ⼆二级部⻔门，雇

员 Id：2 Name：花花
22:23:37.168 [main] INFO org.itstack.demo.design.test.ApiTest - 三级部⻔门，雇

员 Id：4 Name：蹦蹦

22:23:37.169 [main] INFO org.itstack.demo.design.test.ApiTest - 三级部⻔门，雇

员 Id：5 Name：⼤大烧

22:23:37.169 [main] INFO org.itstack.demo.design.test.ApiTest - 四级部⻔门，雇
员 Id：6 Name：⻁虎哥

22:23:37.169 [main] INFO org.itstack.demo.design.test.ApiTest - 四级部⻔门，雇

员 Id：7 Name：玲姐

22:23:37.169 [main] INFO org.itstack.demo.design.test.ApiTest - 四级部⻔门，雇

员 Id：8 Name：秋雅

22:23:37.169 [main] INFO org.itstack.demo.design.test.ApiTest - ⼆二级部⻔门，雇
员 Id：3 Name：⾖豆包

Process finished with exit code 0

1

2

3

4

5

6

7

8

9

⼯工程 描述

itstack-demo-design-16-01 使⽤用JDBC⽅方式连接数据库

itstack-demo-design-16-02 ⼿手写ORM框架操作数据库

同龄⼈人的差距是从什什么时候拉开的

同样的幼⼉儿园、同样的⼩小学、⼀一样的书本、⼀一样的课堂，有⼈人学习好、有⼈人学习差。不不只是上学，⼏几乎
⼈人⽣生处处都是赛道，发令枪响起的时刻，也就把⼈人⽣生的差距拉开。编程开发这条路路也是很⻓长很宽，有⼈人
跑得快有⼈人跑得慢。那么你是否想起过，这⼀一点点的差距到遥不不可及的距离，是从哪⼀一天开始的。摸摸
肚⼦子的⾁肉，看看远处的路路，别⼈人讲的是故事，你想起的都是事故。

思想没有产品⾼高才写出⼀一⽚片的ifelse

当你承接⼀一个需求的时候，⽐比如；交易易、订单、营销、保险等各类场景。如果你不不熟悉这个场景下的业
务模式，以及将来的拓拓展⽅方向，那么很难设计出良好可扩展的系统。再加上产品功能初建，说⽼老老板要的
急，尽快上线。作为程序员的你更更没有时间思考，整体⼀一看现在的需求也不不难，直接上⼿手开⼲干(⼀一个⽅方法
两个if语句句)，这样确实满⾜足了了当前需求。但⽼老老板的想法多呀，产品也跟着变化快，到你这就是改改改，
加加加。当然你也不不客⽓气，回⾸首掏就是1024个if语句句！

⽇日积⽉月累的技术沉淀是为了了厚积薄发

粗略略的估算过，如果从上⼤大学开始每天写 200⾏行行，⼀一个⽉月是 6000⾏行行，⼀一年年算10个⽉月话，就是6万⾏行行，
第三年年出去实习的是时候就有 20万⾏行行的代码量量。如果你能做到这⼀一点，找⼯工作难？有时候很多事情就

是靠时间积累出来的，想⾛走捷径有时候真的没有。你的技术⽔水平、你的业务能⼒力力、你身上的⾁肉，都是⼀一
点点积累下来的，不不要浪费看似很短的时间，⼀一年年年年坚持下来，留留下印刻⻘青春的痕迹，多给⾃自⼰己武装上
⼀一些能⼒力力。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. mysql 5.1.20
4. 涉及⼯工程⼀一个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、中介者模式介绍

https://bugstack.cn/assets/images/qrcode.png

中介者模式要解决的就是复杂功能应⽤用之间的重复调⽤用，在这中间添加⼀一层中介者包装服务，对外提供
简单、通⽤用、易易扩展的服务能⼒力力。

这样的设计模式⼏几乎在我们⽇日常⽣生活和实际业务开发中都会⻅见到，例例如；⻜飞机

0

降落有⼩小姐姐在塔台喊
话、⽆无论哪个⽅方向来的候⻋车都从站台上下、公司的系统中有⼀一个中台专⻔门为你包装所有接⼝口和提供统⼀一
的服务等等，这些都运⽤用了了中介者模式。除此之外，你⽤用到的⼀一些中间件，他们包装了了底层多种数据库
的差异化，提供⾮非常简单的⽅方式进⾏行行使⽤用。

三、案例例场景模拟

在本案例例中我们通过模仿Mybatis⼿手写ORM框架，通过这样操作数据库学习中介者运⽤用场景

除了了这样的中间件层使⽤用场景外，对于⼀一些外部接⼝口，例例如N种奖品服务，可以由中台系统进⾏行行统⼀一包
装对外提供服务能⼒力力。也是中介者模式的⼀一种思想体现。

在本案例例中我们会把jdbc层进⾏行行包装，让⽤用户在使⽤用数据库服务的时候，可以和使⽤用mybatis⼀一样简单
⽅方便便，通过这样的源码⽅方式学习中介者模式，也⽅方便便对源码知识的拓拓展学习，增强知识栈。

四、⽤用⼀一坨坨代码实现

这是⼀一种关于数据库操作最初的⽅方式

基本上每⼀一个学习开发的⼈人都学习过直接使⽤用jdbc⽅方式连接数据库，进⾏行行CRUD操作。以下的例例⼦子可以
当做回忆。

1. ⼯工程结构

这⾥里里的类⽐比较简单只包括了了⼀一个数据库操作类。

2. 代码实现

itstack-demo-design-16-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" JDBCUtil.java

1

2

3

4

5

6

public class JDBCUtil {

 private static Logger logger =

LoggerFactory.getLogger(JDBCUtil.class);

 public static final String URL = "jdbc:mysql://127.0.0.1:3306/itstack-

demo-design";

 public static final String USER = "root";

 public static final String PASSWORD = "123456";

 public static void main(String[] args) throws Exception {

 //1. 加载驱动程序

 Class.forName("com.mysql.jdbc.Driver");

 //2. 获得数据库连接
 Connection conn = DriverManager.getConnection(URL, USER,

PASSWORD);

 //3. 操作数据库

 Statement stmt = conn.createStatement();

 ResultSet resultSet = stmt.executeQuery("SELECT id, name, age,

createTime, updateTime FROM user");

 //4. 如果有数据 resultSet.next() 返回true

 while (resultSet.next()) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

以上是使⽤用JDBC的⽅方式进⾏行行直接操作数据库，⼏几乎⼤大家都使⽤用过这样的⽅方式。

3. 测试结果

从测试结果可以看到这⾥里里已经查询到了了数据库中的数据。只不不过如果在全部的业务开发中都这样实
现，会⾮非常的麻烦。

五、中介模式开发ORM框架

`接下来就使⽤用中介模式的思想完成模仿Mybatis的ORM框架开发~

1. ⼯工程结构

 logger.info("测试结果 姓名：{} 年年龄：{}",
resultSet.getString("name"),resultSet.getInt("age"));

 }

 }

}

19

20

21

22

23

15:38:10.919 [main] INFO org.itstack.demo.design.JDBCUtil - 测试结果 姓名：⽔水

⽔水 年年龄：18

15:38:10.922 [main] INFO org.itstack.demo.design.JDBCUtil - 测试结果 姓名：⾖豆

⾖豆 年年龄：18

15:38:10.922 [main] INFO org.itstack.demo.design.JDBCUtil - 测试结果 姓名：花

花 年年龄：19

Process finished with exit code 0

1

2

3

4

5

itstack-demo-design-16-02

!"" src
 #"" main
 $ #"" java
 $ $!"" org.itstack.demo.design
 $ $ #"" dao
 $ $ $ #"" ISchool.java
 $ $ $!"" IUserDao.java
 $ $ #"" mediator
 $ $ $ #"" Configuration.java
 $ $ $ #"" DefaultSqlSession.java
 $ $ $ #"" DefaultSqlSessionFactory.java
 $ $ $ #"" Resources.java
 $ $ $ #"" SqlSession.java
 $ $ $ #"" SqlSessionFactory.java
 $ $ $ #"" SqlSessionFactoryBuilder.java
 $ $ $!"" SqlSessionFactoryBuilder.java
 $ $!"" po
 $ $ #"" School.java
 $ $!"" User.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

中介者模式模型结构

以上是对ORM框架实现的核⼼心类，包括了了；加载配置⽂文件、对xml解析、获取数据库session、操
作数据库以及结果返回。
左上是对数据库的定义和处理理，基本包括我们常⽤用的⽅方法； <T> T selectOne、 <T> List<T>

selectList等。

右侧蓝⾊色部分是对数据库配置的开启session的⼯工⼚厂处理理类，这⾥里里的⼯工⼚厂会操
作 DefaultSqlSession

之后是红⾊色地⽅方的 SqlSessionFactoryBuilder，这个类是对数据库操作的核⼼心类；处理理⼯工⼚厂、

解析⽂文件、拿到session等。

接下来我们就分别介绍各个类的功能实现过程。

2. 代码实现

2.1 定义SqlSession接⼝口

 $!"" resources
 $ #"" mapper
 $ $ #"" School_Mapper.xml
 $ $!"" User_Mapper.xml
 $!"" mybatis-config-datasource.xml
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

21

22

23

24

25

26

27

28

29

这⾥里里定义了了对数据库操作的查询接⼝口，分为查询⼀一个结果和查询多个结果，同时包括有参数和没有
参数的⽅方法。

2.2 SqlSession具体实现类

public interface SqlSession {

 <T> T selectOne(String statement);

 <T> T selectOne(String statement, Object parameter);

 <T> List<T> selectList(String statement);

 <T> List<T> selectList(String statement, Object parameter);

 void close();

}

1

2

3

4

5

6

7

8

9

10

11

12

public class DefaultSqlSession implements SqlSession {

 private Connection connection;

 private Map<String, XNode> mapperElement;

 public DefaultSqlSession(Connection connection, Map<String, XNode>

mapperElement) {

 this.connection = connection;

 this.mapperElement = mapperElement;

 }

 @Override

 public <T> T selectOne(String statement) {

 try {

 XNode xNode = mapperElement.get(statement);

 PreparedStatement preparedStatement =

connection.prepareStatement(xNode.getSql());

 ResultSet resultSet = preparedStatement.executeQuery();

 List<T> objects = resultSet2Obj(resultSet,

Class.forName(xNode.getResultType()));

 return objects.get(0);

 } catch (Exception e) {

 e.printStackTrace();

 }

 return null;

 }

 @Override

 public <T> List<T> selectList(String statement) {

 XNode xNode = mapperElement.get(statement);

 try {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 PreparedStatement preparedStatement =

connection.prepareStatement(xNode.getSql());

 ResultSet resultSet = preparedStatement.executeQuery();

 return resultSet2Obj(resultSet,

Class.forName(xNode.getResultType()));

 } catch (Exception e) {

 e.printStackTrace();

 }

 return null;

 }

 // ...

 private <T> List<T> resultSet2Obj(ResultSet resultSet, Class<?> clazz)

{

 List<T> list = new ArrayList<>();

 try {

 ResultSetMetaData metaData = resultSet.getMetaData();

 int columnCount = metaData.getColumnCount();

 // 每次遍历⾏行行值

 while (resultSet.next()) {

 T obj = (T) clazz.newInstance();

 for (int i = 1; i <= columnCount; i++) {

 Object value = resultSet.getObject(i);

 String columnName = metaData.getColumnName(i);

 String setMethod = "set" + columnName.substring(0,

1).toUpperCase() + columnName.substring(1);

 Method method;

 if (value instanceof Timestamp) {

 method = clazz.getMethod(setMethod, Date.class);

 } else {

 method = clazz.getMethod(setMethod,

value.getClass());

 }

 method.invoke(obj, value);

 }

 list.add(obj);

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 return list;

 }

 @Override

 public void close() {

 if (null == connection) return;

 try {

 connection.close();

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

这⾥里里包括了了接⼝口定义的⽅方法实现，也就是包装了了jdbc层。
通过这样的包装可以让对数据库的jdbc操作隐藏起来，外部调⽤用的时候对⼊入参、出参都有内部进⾏行行
处理理。

2.3 定义SqlSessionFactory接⼝口

开启⼀一个 SqlSession， 这⼏几乎是⼤大家在平时的使⽤用中都需要进⾏行行操作的内容。虽然你看不不⻅见，
但是当你有数据库操作的时候都会获取每⼀一次执⾏行行的 SqlSession。

2.4 SqlSessionFactory具体实现类

DefaultSqlSessionFactory，是使⽤用mybatis最常⽤用的类，这⾥里里我们简单的实现了了⼀一个版本。
虽然是简单的版本，但是包括了了最基本的核⼼心思路路。当开启 SqlSession时会进⾏行行返回⼀一

个 DefaultSqlSession

这个构造函数中向下传递了了 Configuration配置⽂文件，在这个配置⽂文件中包括； Connection

connection、 Map<String, String> dataSource、 Map<String, XNode>

mapperElement。如果有你阅读过Mybatis源码，对这个就不不会陌⽣生。

2.5 SqlSessionFactoryBuilder实现

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

73

74

75

76

77

public interface SqlSessionFactory {

 SqlSession openSession();

}

1

2

3

4

5

public class DefaultSqlSessionFactory implements SqlSessionFactory {

 private final Configuration configuration;

 public DefaultSqlSessionFactory(Configuration configuration) {

 this.configuration = configuration;

 }

 @Override

 public SqlSession openSession() {

 return new DefaultSqlSession(configuration.connection,

configuration.mapperElement);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public class SqlSessionFactoryBuilder {

 public DefaultSqlSessionFactory build(Reader reader) {

 SAXReader saxReader = new SAXReader();

 try {

 saxReader.setEntityResolver(new XMLMapperEntityResolver());

 Document document = saxReader.read(new InputSource(reader));

 Configuration configuration =

parseConfiguration(document.getRootElement());

 return new DefaultSqlSessionFactory(configuration);

 } catch (DocumentException e) {

 e.printStackTrace();

 }

 return null;

 }

 private Configuration parseConfiguration(Element root) {

 Configuration configuration = new Configuration();

 configuration.setDataSource(dataSource(root.selectNodes("//dataSource"))

);

 configuration.setConnection(connection(configuration.dataSource));

 configuration.setMapperElement(mapperElement(root.selectNodes("mappers")

));

 return configuration;

 }

 // 获取数据源配置信息

 private Map<String, String> dataSource(List<Element> list) {

 Map<String, String> dataSource = new HashMap<>(4);

 Element element = list.get(0);

 List content = element.content();

 for (Object o : content) {

 Element e = (Element) o;

 String name = e.attributeValue("name");

 String value = e.attributeValue("value");

 dataSource.put(name, value);

 }

 return dataSource;

 }

 private Connection connection(Map<String, String> dataSource) {

 try {

 Class.forName(dataSource.get("driver"));

 return DriverManager.getConnection(dataSource.get("url"),

dataSource.get("username"), dataSource.get("password"));

 } catch (ClassNotFoundException | SQLException e) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

 e.printStackTrace();

 }

 return null;

 }

 // 获取SQL语句句信息

 private Map<String, XNode> mapperElement(List<Element> list) {

 Map<String, XNode> map = new HashMap<>();

 Element element = list.get(0);

 List content = element.content();

 for (Object o : content) {

 Element e = (Element) o;

 String resource = e.attributeValue("resource");

 try {

 Reader reader = Resources.getResourceAsReader(resource);

 SAXReader saxReader = new SAXReader();

 Document document = saxReader.read(new

InputSource(reader));

 Element root = document.getRootElement();

 //命名空间

 String namespace = root.attributeValue("namespace");

 // SELECT

 List<Element> selectNodes = root.selectNodes("select");

 for (Element node : selectNodes) {

 String id = node.attributeValue("id");

 String parameterType =

node.attributeValue("parameterType");

 String resultType =

node.attributeValue("resultType");

 String sql = node.getText();

 // ? 匹配
 Map<Integer, String> parameter = new HashMap<>();

 Pattern pattern = Pattern.compile("(#\\{(.*?)})");

 Matcher matcher = pattern.matcher(sql);

 for (int i = 1; matcher.find(); i++) {

 String g1 = matcher.group(1);

 String g2 = matcher.group(2);

 parameter.put(i, g2);

 sql = sql.replace(g1, "?");

 }

 XNode xNode = new XNode();

 xNode.setNamespace(namespace);

 xNode.setId(id);

 xNode.setParameterType(parameterType);

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

在这个类中包括的核⼼心⽅方法有； build(构建实例例化元素)、 parseConfiguration(解析配置)、

dataSource(获取数据库配置)、 connection(Map<String, String> dataSource) (链接数据

库)、 mapperElement (解析sql语句句)

接下来我们分别介绍这样的⼏几个核⼼心⽅方法。

build(构建实例例化元素)

这个类主要⽤用于创建解析xml⽂文件的类，以及初始化SqlSession⼯工⼚厂
类 DefaultSqlSessionFactory。另外需要注意这段代码 saxReader.setEntityResolver(new

XMLMapperEntityResolver());，是为了了保证在不不联⽹网的时候⼀一样可以解析xml，否则会需要从互联
⽹网获取dtd⽂文件。

parseConfiguration(解析配置)

是对xml中的元素进⾏行行获取，这⾥里里主要获取了了； dataSource、 mappers，⽽而这两个配置⼀一个是我们数

据库的链接信息，另外⼀一个是对数据库操作语句句的解析。

connection(Map<String, String> dataSource) (链接数据库)

链接数据库的地⽅方和我们常⻅见的⽅方式是⼀一样的； Class.forName(dataSource.get("driver"));，

但是这样包装以后外部是不不需要知道具体的操作。同时当我们需要链接多套数据库的时候，也是可以在
这⾥里里扩展。

mapperElement (解析sql语句句)

这部分代码块内容相对来说⽐比较⻓长，但是核⼼心的点就是为了了解析xml中的sql语句句配置。在我们平常的使
⽤用中基本都会配置⼀一些sql语句句，也有⼀一些⼊入参的占位符。在这⾥里里我们使⽤用正则表达式的⽅方式进⾏行行解析操
作。

解析完成的sql语句句就有了了⼀一个名称和sql的映射关系，当我们进⾏行行数据库操作的时候，这个组件就可以
通过映射关系获取到对应sql语句句进⾏行行操作。

3. 测试验证

在测试之前需要导⼊入sql语句句到数据库中;

 xNode.setResultType(resultType);

 xNode.setSql(sql);

 xNode.setParameter(parameter);

 map.put(namespace + "." + id, xNode);

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 return map;

 }

}

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

库名： itstack-demo-design

表名： user、 school

3.1 创建数据库对象类

⽤用户类

CREATE TABLE school (id bigint NOT NULL AUTO_INCREMENT, name varchar(64),

address varchar(256), createTime datetime, updateTime datetime, PRIMARY KEY

(id)) ENGINE=InnoDB DEFAULT CHARSET=utf8;

insert into school (id, name, address, createTime, updateTime) values (1,

'北北京⼤大学', '北北京市海海淀区颐和园路路5号', '2019-10-18 13:35:57', '2019-10-18

13:35:57');

insert into school (id, name, address, createTime, updateTime) values (2,

'南开⼤大学', '中国天津市南开区卫津路路94号', '2019-10-18 13:35:57', '2019-10-18

13:35:57');

insert into school (id, name, address, createTime, updateTime) values (3,

'同济⼤大学', '上海海市彰武路路1号同济⼤大厦A楼7楼7区', '2019-10-18 13:35:57', '2019-10-

18 13:35:57');

CREATE TABLE user (id bigint(11) NOT NULL AUTO_INCREMENT, name

varchar(32), age int(4), address varchar(128), entryTime datetime, remark

varchar(64), createTime datetime, updateTime datetime, status int(4)

DEFAULT '0', dateTime varchar(64), PRIMARY KEY (id), INDEX idx_name (name)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

insert into user (id, name, age, address, entryTime, remark, createTime,

updateTime, status, dateTime) values (1, '⽔水⽔水', 18, '吉林林省榆树市⿊黑林林镇尹家村5

组', '2019-12-22 00:00:00', '⽆无', '2019-12-22 00:00:00', '2019-12-22

00:00:00', 0, '20200309');

insert into user (id, name, age, address, entryTime, remark, createTime,

updateTime, status, dateTime) values (2, '⾖豆⾖豆', 18, '辽宁省⼤大连市清河湾司⻢马道
407路路', '2019-12-22 00:00:00', '⽆无', '2019-12-22 00:00:00', '2019-12-22

00:00:00', 1, null);

insert into user (id, name, age, address, entryTime, remark, createTime,

updateTime, status, dateTime) values (3, '花花', 19, '辽宁省⼤大连市清河湾司⻢马道

407路路', '2019-12-22 00:00:00', '⽆无', '2019-12-22 00:00:00', '2019-12-22

00:00:00', 0, '20200310');

1

2

3

4

5

6

7

8

public class User {

 private Long id;

 private String name;

 private Integer age;

 private Date createTime;

 private Date updateTime;

 // ... get/set

}

1

2

3

4

5

6

7

8

9

10

学校类

这两个类都⾮非常简单，就是基本的数据库信息。

3.2 创建DAO包

⽤用户Dao

学校Dao

3.3 ORM配置⽂文件

链接配置

public class School {

 private Long id;

 private String name;

 private String address;

 private Date createTime;

 private Date updateTime;

 // ... get/set

}

1

2

3

4

5

6

7

8

9

10

public interface IUserDao {

 User queryUserInfoById(Long id);

}

1

2

3

4

5

public interface ISchoolDao {

 School querySchoolInfoById(Long treeId);

}

1

2

3

4

5

<configuration>

 <environments default="development">

 <environment id="development">

 <transactionManager type="JDBC"/>

 <dataSource type="POOLED">

 <property name="driver" value="com.mysql.jdbc.Driver"/>

 <property name="url"

value="jdbc:mysql://127.0.0.1:3306/itstack_demo_design?useUnicode=true"/>

 <property name="username" value="root"/>

 <property name="password" value="123456"/>

 </dataSource>

 </environment>

1

2

3

4

5

6

7

8

9

10

11

这个配置与我们平常使⽤用的mybatis基本是⼀一样的，包括了了数据库的连接池信息以及需要引⼊入的
mapper映射⽂文件。

操作配置(⽤用户)

操作配置(学校)

3.4 单个结果查询测试

 </environments>

 <mappers>

 <mapper resource="mapper/User_Mapper.xml"/>

 <mapper resource="mapper/School_Mapper.xml"/>

 </mappers>

</configuration>

12

13

14

15

16

17

18

19

<mapper namespace="org.itstack.demo.design.dao.IUserDao">

 <select id="queryUserInfoById" parameterType="java.lang.Long"

resultType="org.itstack.demo.design.po.User">

 SELECT id, name, age, createTime, updateTime

 FROM user

 where id = #{id}

 </select>

 <select id="queryUserList"

parameterType="org.itstack.demo.design.po.User"

resultType="org.itstack.demo.design.po.User">

 SELECT id, name, age, createTime, updateTime

 FROM user

 where age = #{age}

 </select>

</mapper>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

<mapper namespace="org.itstack.demo.design.dao.ISchoolDao">

 <select id="querySchoolInfoById"

resultType="org.itstack.demo.design.po.School">

 SELECT id, name, address, createTime, updateTime

 FROM school

 where id = #{id}

 </select>

</mapper>

1

2

3

4

5

6

7

8

9

这⾥里里的使⽤用⽅方式和 Mybatis是⼀一样的，都包括了了；资源加载和解析、 SqlSession⼯工⼚厂构建、开

启 SqlSession以及最后执⾏行行查询操作 selectOne

测试结果

从结果上看已经满⾜足了了我们的查询需求。

3.5 集合结果查询测试

@Test

public void test_queryUserInfoById() {

 String resource = "mybatis-config-datasource.xml";

 Reader reader;

 try {

 reader = Resources.getResourceAsReader(resource);

 SqlSessionFactory sqlMapper = new

SqlSessionFactoryBuilder().build(reader);

 SqlSession session = sqlMapper.openSession();

 try {

 User user =

session.selectOne("org.itstack.demo.design.dao.IUserDao.queryUserInfoById"

, 1L);

 logger.info("测试结果：{}", JSON.toJSONString(user));

 } finally {

 session.close();

 reader.close();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

16:56:51.831 [main] INFO org.itstack.demo.design.demo.ApiTest - 测试结

果：{"age":18,"createTime":1576944000000,"id":1,"name":"⽔水

⽔水","updateTime":1576944000000}

Process finished with exit code 0

1

2

3

@Test

public void test_queryUserList() {

 String resource = "mybatis-config-datasource.xml";

 Reader reader;

 try {

 reader = Resources.getResourceAsReader(resource);

 SqlSessionFactory sqlMapper = new

SqlSessionFactoryBuilder().build(reader);

 SqlSession session = sqlMapper.openSession();

 try {

1

2

3

4

5

6

7

8

9

这个测试内容与以上只是查询⽅方法有所不不同； session.selectList，是查询⼀一个集合结果。

测试结果

测试验证集合的结果也是正常的，⽬目前位置测试全部通过。

六、总结

以上通过中介者模式的设计思想我们⼿手写了了⼀一个ORM框架，隐去了了对数据库操作的复杂度，让外
部的调⽤用⽅方可以⾮非常简单的进⾏行行操作数据库。这也是我们平常使⽤用的 Mybatis的原型，在我们⽇日

常的开发使⽤用中，只需要按照配置即可⾮非常简单的操作数据库。
除了了以上这种组件模式的开发外，还有服务接⼝口的包装也可以使⽤用中介者模式来实现。⽐比如你们公
司有很多的奖品接⼝口需要在营销活动中对接，那么可以把这些奖品接⼝口统⼀一收到中台开发⼀一个奖品
中⼼心，对外提供服务。这样就不不需要每⼀一个需要对接奖品的接⼝口，都去找具体的提供者，⽽而是找中
台服务即可。
在上述的实现和测试使⽤用中可以看到，这种模式的设计满⾜足了了；单⼀一职责和开闭原则，也就符合

了了迪⽶米特原则，即越少⼈人知道越好。外部的⼈人只需要按照需求进⾏行行调⽤用，不不需要知道具体的是如何

实现的，复杂的⼀一⾯面已经有组件合作服务平台处理理。

 User req = new User();

 req.setAge(18);

 List<User> userList =

session.selectList("org.itstack.demo.design.dao.IUserDao.queryUserList",

req);

 logger.info("测试结果：{}", JSON.toJSONString(userList));

 } finally {

 session.close();

 reader.close();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

}

10

11

12

13

14

15

16

17

18

19

20

21

16:58:13.963 [main] INFO org.itstack.demo.design.demo.ApiTest - 测试结

果：[{"age":18,"createTime":1576944000000,"id":1,"name":"⽔水
⽔水","updateTime":1576944000000},

{"age":18,"createTime":1576944000000,"id":2,"name":"⾖豆

⾖豆","updateTime":1576944000000}]

Process finished with exit code 0

1

2

3

第 5 节：备忘录模式

实现不不了了是研发的借⼝口？

实现不不了了，有时候是功能复杂度较⾼高难以实现，有时候是⼯工期较短实现不不完。⽽而编码的⾏行行为⼜又是⼀一个不不
太好量量化的过程，同样⼀一个功能每个⼈人的实现⽅方式不不⼀一样，遇到开发问题解决问题的速度也不不⼀一样。除
此之外还很不不好给产品解释具体为什什么要这个⼯工期时间，这就像盖楼的图纸最终要多少⽔水泥泥砂浆⼀一样。
那么这时研发会尽可能的去通过⼀一些经验，制定流程规范、设计、开发、评审等，确定⼀一个可以完成的
时间范围，⼜又避免⻛风险的时间点后。再被压缩，往往会出⼀一些⽭矛盾点，能压缩要解释为什什么之前要那么
多时间，不不能压缩⼜又有各⽅方不不断施加的压⼒力力。因此有时候不不⼀一定是借⼝口，是要考虑如何让整个团队健康
的发展。

⿎鼓励有时⽐比压⼒力力要重要！

在学习的过程中，很多时候我们听到的都是，你要怎样，怎样，你瞧瞧谁谁谁，哪怕今天听不不到这样的声

⾳音了了，但因为曾经反复听到过⽽而导致内⼼心抗拒。虽然也知道⾃自⼰己要去学，但是很难坚持，学着学着就没
有了了⽅方向，看到还有那么多不不会的就更更慌了了，以⾄至于最后⼼心态崩了了，更更不不愿意学。其实程序员的压⼒力力并
不不⼩小，想成⻓长⼏几乎是需要⼀一直的学习，就像似乎再也不不敢说精通java了了⼀一样，知识量量实在是随着学习的
深⼊入，越来越深，越来越⼴广。所以需要，开⼼心学习，快乐成⻓长！

临阵的你好像⼀一直很着急！

经常的听到；⽼老老师明天就要了了你帮我弄弄弄弄吧、你给我写⼀一下完事我就学这次着急、现在这不不是没时间学吗快

给我看看。其实看到的类似的还有很多，很纳闷你的着急怎么来的，不不太可能，⼈人在家中坐，祸从天上

落。⽼老老师怎么就那个时间找你了了，⽼老老板怎么就今天管你要了了，还不不是⽇日积⽉月累你没有学习，临时抱佛脚
乱着急！即使后来真的有⼈人帮你了了，但最好不不要放松，要尽快学会，躲得过初⼀一还有初⼆二呢！

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程⼀一个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

https://bugstack.cn/assets/images/qrcode.png

⼯工程 描述

itstack-demo-design-17-00 开发配置⽂文件备忘录

⼆二、备忘录模式介绍

备忘录模式是以可以恢复或者说回滚，配置、版本、悔悔棋为核⼼心功能的设计模式，⽽而这种设计模式属于
⾏行行为模式。在功能实现上是以不不破坏原对象为基础增加备忘录操作类，记录原对象的⾏行行为从⽽而实现备忘
录模式。

这个设计在我们平常的⽣生活或者开发中也是⽐比较常⻅见的，⽐比如：后悔悔药、孟婆汤(⼀一下回滚到0)，IDEA编
辑和撤销、⼩小霸王游戏机存档。当然还有我们⾮非常常⻅见的Photoshop，如下；

三、案例例场景模拟

在本案例例中我们模拟系统在发布上线的过程中记录线上配置⽂文件⽤用于紧急回滚

在⼤大型互联⽹网公司系统的发布上线⼀一定是易易⽤用、安全、可处理理紧急状况的，同时为了了可以隔离线上和本
地环境，⼀一般会把配置⽂文件抽取出来放到线上，避免有⼈人误操作导致本地的配置内容发布出去。同时线
上的配置⽂文件也会在每次变更更的时候进⾏行行记录，包括；版本号、时间、MD5、内容信息和操作⼈人。

在后续上线时如果发现紧急问题，系统就会需要回滚操作，如果执⾏行行回滚那么也可以设置配置⽂文件是否
回滚。因为每⼀一个版本的系统可能会随着带着⼀一些配置⽂文件的信息，这个时候就可以很⽅方便便的让系统与
配置⽂文件⼀一起回滚操作。

我们接下来就使⽤用备忘录模式，模拟如何记录配置⽂文件信息。实际的使⽤用过程中还会将信息存放到库中
进⾏行行保存，这⾥里里暂时只是使⽤用内存记录。

四、备忘录模式记录配置⽂文件版本信息

备忘录的设计模式实现⽅方式，重点在于不不更更改原有类的基础上，增加备忘录类存放记录。可能平时虽然
不不⼀一定⾮非得按照这个设计模式的代码结构来实现⾃自⼰己的需求，但是对于功能上可能也完成过类似的功
能，记录系统的信息。

除了了现在的这个案例例外，还可以是运营⼈人员在后台erp创建活动对信息的记录，⽅方便便运营⼈人员可以上下
修改⾃自⼰己的版本，⽽而不不⾄至于因为误操作⽽而丢失信息。

1. ⼯工程结构

itstack-demo-design-17-00

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" Admin.java
 $ #"" ConfigFile.java
 $ #"" ConfigMemento.java
 $!"" ConfigOriginator.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

13

备忘录模式模型结构

以上是⼯工程结构的⼀一个类图，其实相对来说并不不复杂，除了了原有的配置类(ConfigFile)以外，只
新增加了了三个类。
ConfigMemento：备忘录类，相当于是对原有配置类的扩展

ConfigOriginator：记录者类，获取和返回备忘录类对象信息

Admin：管理理员类，⽤用于操作记录备忘信息，⽐比如你⼀一些列列的顺序执⾏行行了了什什么或者某个版本下的

内容信息

2. 代码实现

2.1 配置信息类

配置类可以是任何形式的，这⾥里里只是简单的描述了了⼀一个基本的配置内容信息。

2.2 备忘录类

备忘录是对原有配置类的扩展，可以设置和获取配置信息。

2.3 记录者类

public class ConfigFile {

 private String versionNo; // 版本号

 private String content; // 内容
 private Date dateTime; // 时间

 private String operator; // 操作⼈人

 // ...get/set

}

1

2

3

4

5

6

7

8

9

public class ConfigMemento {

 private ConfigFile configFile;

 public ConfigMemento(ConfigFile configFile) {

 this.configFile = configFile;

 }

 public ConfigFile getConfigFile() {

 return configFile;

 }

 public void setConfigFile(ConfigFile configFile) {

 this.configFile = configFile;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public class ConfigOriginator {

 private ConfigFile configFile;

 public ConfigFile getConfigFile() {

 return configFile;

 }

 public void setConfigFile(ConfigFile configFile) {

 this.configFile = configFile;

 }

 public ConfigMemento saveMemento(){

1

2

3

4

5

6

7

8

9

10

11

12

13

记录者类除了了对 ConfigFile配置类增加了了获取和设置⽅方法外，还增加了了保存 saveMemento()、

获取 getMemento(ConfigMemento memento)。

saveMemento：保存备忘录的时候会创建⼀一个备忘录信息，并返回回去，交给管理理者处理理。

getMemento：获取的之后并不不是直接返回，⽽而是把备忘录的信息交给现在的配置⽂文件

this.configFile，这部分需要注意。

2.4 管理理员类

 return new ConfigMemento(configFile);

 }

 public void getMemento(ConfigMemento memento){

 this.configFile = memento.getConfigFile();

 }

}

14

15

16

17

18

19

20

21

public class Admin {

 private int cursorIdx = 0;

 private List<ConfigMemento> mementoList = new ArrayList<ConfigMemento>

();

 private Map<String, ConfigMemento> mementoMap = new

ConcurrentHashMap<String, ConfigMemento>();

 public void append(ConfigMemento memento) {

 mementoList.add(memento);

 mementoMap.put(memento.getConfigFile().getVersionNo(), memento);

 cursorIdx++;

 }

 public ConfigMemento undo() {

 if (--cursorIdx <= 0) return mementoList.get(0);

 return mementoList.get(cursorIdx);

 }

 public ConfigMemento redo() {

 if (++cursorIdx > mementoList.size()) return

mementoList.get(mementoList.size() - 1);

 return mementoList.get(cursorIdx);

 }

 public ConfigMemento get(String versionNo){

 return mementoMap.get(versionNo);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

在这个类中主要实现的核⼼心功能就是记录配置⽂文件信息，也就是备忘录的效果，之后提供可以回滚
和获取的⽅方法，拿到备忘录的具体内容。
同时这⾥里里设置了了两个数据结构来存放备忘录，实际使⽤用中可以按需设
置。 List<ConfigMemento>、 Map<String, ConfigMemento>。

最后是提供的备忘录操作⽅方法；存放(append)、回滚(undo)、返回(redo)、定向获取(get)，这
样四个操作⽅方法。

3. 测试验证

3.1 编写测试类

@Test

public void test() {

 Admin admin = new Admin();

 ConfigOriginator configOriginator = new ConfigOriginator();

 configOriginator.setConfigFile(new ConfigFile("1000001", "配置内容A=哈

哈", new Date(), "⼩小傅哥"));

 admin.append(configOriginator.saveMemento()); // 保存配置
 configOriginator.setConfigFile(new ConfigFile("1000002", "配置内容A=嘻

嘻", new Date(), "⼩小傅哥"));

 admin.append(configOriginator.saveMemento()); // 保存配置

 configOriginator.setConfigFile(new ConfigFile("1000003", "配置内容A=么

么", new Date(), "⼩小傅哥"));

 admin.append(configOriginator.saveMemento()); // 保存配置
 configOriginator.setConfigFile(new ConfigFile("1000004", "配置内容A=嘿

嘿", new Date(), "⼩小傅哥"));

 admin.append(configOriginator.saveMemento()); // 保存配置

 // 历史配置(回滚)

 configOriginator.getMemento(admin.undo());

 logger.info("历史配置(回滚)undo：{}",

JSON.toJSONString(configOriginator.getConfigFile()));

 // 历史配置(回滚)

 configOriginator.getMemento(admin.undo());

 logger.info("历史配置(回滚)undo：{}",

JSON.toJSONString(configOriginator.getConfigFile()));

 // 历史配置(前进)

 configOriginator.getMemento(admin.redo());

 logger.info("历史配置(前进)redo：{}",

JSON.toJSONString(configOriginator.getConfigFile()));

 // 历史配置(获取)

 configOriginator.getMemento(admin.get("1000002"));

 logger.info("历史配置(获取)get：{}",

JSON.toJSONString(configOriginator.getConfigFile()));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

这个设计模式的学习有⼀一部分重点是体现在了了单元测试类上，这⾥里里包括了了四次的信息存储和备忘录
历史配置操作。
通过上⾯面添加了了四次配置后，下⾯面分别进⾏行行操作是；回滚1次、再回滚1次，之后向前进1次，最

后是获取指定的版本配置。具体的效果可以参考测试结果。

3.2 测试结果

从测试效果上可以看到，历史配置按照我们的指令进⾏行行了了回滚和前进，以及最终通过指定的版本进
⾏行行获取，符合预期结果。

五、总结

此种设计模式的⽅方式可以满⾜足在不不破坏原有属性类的基础上，扩充了了备忘录的功能。虽然和我们平
时使⽤用的思路路是⼀一样的，但在具体实现上还可以细细品味，这样的⽅方式在⼀一些源码中也有所体现。
在以上的实现中我们是将配置模拟存放到内存中，如果关机了了会导致配置信息丢失，因为在⼀一些真
实的场景⾥里里还是需要存放到数据库中。那么此种存放到内存中进⾏行行回复的场景也不不是没有，⽐比如；
Photoshop、运营⼈人员操作ERP配置活动，那么也就是即时性的⼀一般不不需要存放到库中进⾏行行恢复。
另外如果是使⽤用内存⽅方式存放备忘录，需要考虑存储问题，避免造成内存⼤大量量消耗。
设计模式的学习都是为了了更更好的写出可扩展、可管理理、易易维护的代码，⽽而这个学习的过程需要⾃自⼰己
不不断的尝试实际操作，理理论的知识与实际结合还有很⻓长⼀一段距离。切记多多上⼿手！

23:12:09.512 [main] INFO org.itstack.demo.design.test.ApiTest - 历史配置(回

滚)undo：{"content":"配置内容A=嘿嘿","dateTime":159209829432,"operator":"⼩小傅

哥","versionNo":"1000004"}

23:12:09.514 [main] INFO org.itstack.demo.design.test.ApiTest - 历史配置(回

滚)undo：{"content":"配置内容A=么么","dateTime":159209829432,"operator":"⼩小傅
哥","versionNo":"1000003"}

23:12:09.514 [main] INFO org.itstack.demo.design.test.ApiTest - 历史配置(前

进)redo：{"content":"配置内容A=嘿嘿","dateTime":159209829432,"operator":"⼩小傅

哥","versionNo":"1000004"}

23:12:09.514 [main] INFO org.itstack.demo.design.test.ApiTest - 历史配置(获
取)get：{"content":"配置内容A=嘻嘻","dateTime":159320989432,"operator":"⼩小傅

哥","versionNo":"1000002"}

Process finished with exit code 0

1

2

3

4

5

6

⼯工程 描述

itstack-demo-design-18-00 场景模拟⼯工程；模拟⼀一个⼩小客⻋车摇号接⼝口

itstack-demo-design-18-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-18-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

第 6 节：观察者模式

知道的越多不不知道的就越多

编程开发这条路路上的知识是⽆无穷⽆无尽的，就像以前你敢说精通Java，到后来学到越来越多只想写了了解
Java，过了了⼏几年年现在可能想说懂⼀一点点Java。当视野和格局的扩⼤大，会让我们越来越发现原来的看法是
多么浅显，这就像站在地球看地球和站在宇宙看地球⼀一样。但正因为胸怀和眼界的提升让我们有了了更更多
的认识，也逐渐学会了了更更多的技能。虽然不不知道的越来越多，但也因此给⾃自⼰己填充了了更更多的技术栈，让
⾃自⼰己越来越强⼤大。

拒绝学习的惰性很可怕

现在与以前不不⼀一样，资料料多、途径⼴广，在这中间夹杂的⼴广告也⾮非常多。这就让很多初学者很难找到⾃自⼰己
要的知识，最后看到有⼈人推荐相关学习资料料⽴立刻屏蔽、删除，但同时技术优秀的资料料也不不能让需要的⼈人
看⻅见了了。久⽽而久之把更更多的时间精⼒力力都放在游戏、娱乐、影⾳音上，适当的放松是可以的，但往往沉迷以
后就很难出来，因此需要做好⼀一些可以让⾃自⼰己成⻓长的计划，稍有克制。

平衡好软件设计和实现成本的度°

有时候⼀一个软件的架构设计需要符合当前条件下的各项因素，往往不不能因为⼼心中想当然的有某个蓝图，
就去开始执⾏行行。也许虽然你的设计是⾮非常优秀的，但是放在当前环境下很难满⾜足业务的时间要求，当⼀一
个业务的基本诉求不不能满⾜足后，就很难拉动市场。没有产品的DAU⽀支撑，最后整个研发的项⽬目也会因此
停滞。但研发⼜又不不能⼀一团乱麻的写代码，因此需要找好⼀一个适合的度，⽐比如可以搭建良好的地基，实现
上可扩展。但在具体的功能上可以先简化实现，随着活下来了了再继续完善迭代。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、观察者模式介绍

https://bugstack.cn/assets/images/qrcode.png

简单来讲观察者

1

模式，就是当⼀一个⾏行行为发⽣生时传递信息给另外⼀一个⽤用户接收做出相应的处理理，两者之
间没有直接的耦合关联。例例如；狙击⼿手、李李云⻰龙。

除了了⽣生活中的场景外，在我们编程开发中也会常⽤用到⼀一些观察者的模式或者组件，例例如我们经常使⽤用的
MQ服务，虽然MQ服务是有⼀一个通知中⼼心并不不是每⼀一个类服务进⾏行行通知，但整体上也可以算作是观察者
模式的思路路设计。再⽐比如可能有做过的⼀一些类似事件监听总线，让主线服务与其他辅线业务服务分离，
为了了使系统降低耦合和增强扩展性，也会使⽤用观察者模式进⾏行行处理理。

三、案例例场景模拟

在本案例例中我们模拟每次⼩小客⻋车指标摇号事件通知场景(真实的不不会由官⽹网给你发消息)

可能⼤大部分⼈人看到这个案例例⼀一定会想到⾃自⼰己每次摇号都不不中的场景，收到⼀一个遗憾的短信通知。当然⽬目
前的摇号系统并不不会给你发短信，⽽而是由百度或者⼀一些其他插件发的短信。那么假如这个类似的摇号功
能如果由你来开发，并且需要对外部的⽤用户做⼀一些事件通知以及需要在主流程外再添加⼀一些额外的辅助
流程时该如何处理理呢？

基本很多⼈人对于这样的通知事件类的实现往往⽐比较粗犷，直接在类⾥里里⾯面就添加了了。1是考虑

"

这可能不不
会怎么扩展，2是压根就没考虑

2

过。但如果你有仔细思考过你的核⼼心类功能会发现，这⾥里里⾯面有⼀一些核
⼼心主链路路，还有⼀一部分是辅助功能。⽐比如完成了了某个⾏行行为后需要触发MQ给外部，以及做⼀一些消息PUSH
给⽤用户等，这些都不不算做是核⼼心流程链路路，是可以通过事件通知的⽅方式进⾏行行处理理。

那么接下来我们就使⽤用这样的设计模式来优化重构此场景下的代码。

1. 场景模拟⼯工程

这⾥里里提供的是⼀一个模拟⼩小客⻋车摇号的服务接⼝口。

2. 场景简述

2.1 摇号服务接⼝口

itstack-demo-design-18-00

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" MinibusTargetService.java

1

2

3

4

5

6

⾮非常简单的⼀一个模拟摇号接⼝口，与真实公平的摇号是有差别的。

四、⽤用⼀一坨坨代码实现

这⾥里里我们先使⽤用最粗暴暴的⽅方式来实现功能

按照需求需要在原有的摇号接⼝口中添加MQ消息发送以及短消息通知功能，如果是最直接的⽅方式那么可
以直接在⽅方法中补充功能即可。

1. ⼯工程结构

这段代码接⼝口中包括了了三部分内容；返回对象(LotteryResult)、定义接⼝口(LotteryService)、
具体实现(LotteryServiceImpl)。

2. 代码实现

public class MinibusTargetService {

 /**

 * 模拟摇号，但不不是摇号算法

 *

 * @param uId ⽤用户编号

 * @return 结果

 */

 public String lottery(String uId) {

 return Math.abs(uId.hashCode()) % 2 == 0 ? "恭喜你，编

码".concat(uId).concat("在本次摇号中签") : "很遗憾，编

码".concat(uId).concat("在本次摇号未中签或摇号资格已过期");

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

itstack-demo-design-18-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" LotteryResult.java
 #"" LotteryService.java
 !"" LotteryServiceImpl.java

1

2

3

4

5

6

7

8

public class LotteryServiceImpl implements LotteryService {

 private Logger logger =

LoggerFactory.getLogger(LotteryServiceImpl.class);

 private MinibusTargetService minibusTargetService = new

MinibusTargetService();

1

2

3

4

5

从以上的⽅方法实现中可以看到，整体过程包括三部分；摇号、发短信、发MQ消息，⽽而这部分都是
顺序调⽤用的。
除了了摇号接⼝口调⽤用外，后⾯面的两部分都是⾮非核⼼心主链路路功能，⽽而且会随着后续的业务需求发展⽽而

不不断的调整和扩充，在这样的开发⽅方式下就⾮非常不不利利于维护。

3. 测试验证

3.1 编写测试类

测试过程中提供对摇号服务接⼝口的调⽤用。

3.2 测试结果

从测试结果上是符合预期的，也是平常开发代码的⽅方式，还是⾮非常简单的。

五、观察者模式重构代码

 public LotteryResult doDraw(String uId) {

 // 摇号

 String lottery = minibusTargetService.lottery(uId);

 // 发短信
 logger.info("给⽤用户 {} 发送短信通知(短信)：{}", uId, lottery);

 // 发MQ消息

 logger.info("记录⽤用户 {} 摇号结果(MQ)：{}", uId, lottery);

 // 结果

 return new LotteryResult(uId, lottery, new Date());

 }

}

6

7

8

9

10

11

12

13

14

15

16

17

18

@Test

public void test() {

 LotteryService lotteryService = new LotteryServiceImpl();

 LotteryResult result = lotteryService.doDraw("2765789109876");

 logger.info("测试结果：{}", JSON.toJSONString(result));

}

1

2

3

4

5

6

22:02:24.520 [main] INFO o.i.demo.design.LotteryServiceImpl - 给⽤用户

2765789109876 发送短信通知(短信)：很遗憾，编码2765789109876在本次摇号未中签或摇号资格

已过期

22:02:24.523 [main] INFO o.i.demo.design.LotteryServiceImpl - 记录⽤用户

2765789109876 摇号结果(MQ)：很遗憾，编码2765789109876在本次摇号未中签或摇号资格已过
期

22:02:24.606 [main] INFO org.itstack.demo.design.ApiTest - 测试结

果：{"dateTime":1598764144524,"msg":"很遗憾，编码2765789109876在本次摇号未中签或

摇号资格已过期","uId":"2765789109876"}

Process finished with exit code 0

1

2

3

4

5

接下来使⽤用观察者模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

1. ⼯工程结构

观察者模式模型结构

从上图可以分为三⼤大块看；事件监听、事件处理理、具体的业务流程，另外在业务流程中
LotteryService 定义的是抽象类，因为这样可以通过抽象类将事件功能屏蔽，外部业务流程开
发者不不需要知道具体的通知操作。
右下⻆角圆圈图表示的是核⼼心流程与⾮非核⼼心流程的结构，⼀一般在开发中会把主线流程开发完成后，再
使⽤用通知的⽅方式处理理辅助流程。他们可以是异步的，在MQ以及定时任务的处理理下，保证最终⼀一致
性。

2. 代码实现

2.1 事件监听接⼝口定义

itstack-demo-design-18-02

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" event
 $ #"" listener
 $ $ #"" EventListener.java
 $ $ #"" MessageEventListener.java
 $ $!"" MQEventListener.java
 $!"" EventManager.java
 #"" LotteryResult.java
 #"" LotteryService.java
 !"" LotteryServiceImpl.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

接⼝口中定义了了基本的事件类，这⾥里里如果⽅方法的⼊入参信息类型是变化的可以使⽤用泛型 <T>

2.2 两个监听事件的实现

短消息事件

MQ发送事件

以上是两个事件的具体实现，相对来说都⽐比较简单。如果是实际的业务开发那么会需要调⽤用外部接
⼝口以及控制异常的处理理。
同时我们上⾯面提到事件接⼝口添加泛型，如果有需要那么在事件的实现中就可以按照不不同的类型进⾏行行
包装事件内容。

2.3 事件处理理类

public interface EventListener {

 void doEvent(LotteryResult result);

}

1

2

3

4

5

public class MessageEventListener implements EventListener {

 private Logger logger =

LoggerFactory.getLogger(MessageEventListener.class);

 @Override

 public void doEvent(LotteryResult result) {

 logger.info("给⽤用户 {} 发送短信通知(短信)：{}", result.getuId(),
result.getMsg());

 }

}

1

2

3

4

5

6

7

8

9

10

public class MQEventListener implements EventListener {

 private Logger logger =

LoggerFactory.getLogger(MQEventListener.class);

 @Override

 public void doEvent(LotteryResult result) {

 logger.info("记录⽤用户 {} 摇号结果(MQ)：{}", result.getuId(),

result.getMsg());

 }

}

1

2

3

4

5

6

7

8

9

10

public class EventManager {1

 Map<Enum<EventType>, List<EventListener>> listeners = new HashMap<>();

 public EventManager(Enum<EventType>... operations) {

 for (Enum<EventType> operation : operations) {

 this.listeners.put(operation, new ArrayList<>());

 }

 }

 public enum EventType {

 MQ, Message

 }

 /**

 * 订阅

 * @param eventType 事件类型

 * @param listener 监听

 */

 public void subscribe(Enum<EventType> eventType, EventListener

listener) {

 List<EventListener> users = listeners.get(eventType);

 users.add(listener);

 }

 /**

 * 取消订阅

 * @param eventType 事件类型

 * @param listener 监听

 */

 public void unsubscribe(Enum<EventType> eventType, EventListener

listener) {

 List<EventListener> users = listeners.get(eventType);

 users.remove(listener);

 }

 /**

 * 通知

 * @param eventType 事件类型

 * @param result 结果

 */

 public void notify(Enum<EventType> eventType, LotteryResult result) {

 List<EventListener> users = listeners.get(eventType);

 for (EventListener listener : users) {

 listener.doEvent(result);

 }

 }

}

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

整个处理理的实现上提供了了三个主要⽅方法；订阅(subscribe)、取消订阅(unsubscribe)、通知
(notify)。这三个⽅方法分别⽤用于对监听时间的添加和使⽤用。
另外因为事件有不不同的类型，这⾥里里使⽤用了了枚举的⽅方式进⾏行行处理理，也⽅方便便让外部在规定下使⽤用事件，
⽽而不不⾄至于乱传信息(EventType.MQ、 EventType.Message)。

2.4 业务抽象类接⼝口

这种使⽤用抽象类的⽅方式定义实现⽅方法，可以在⽅方法中扩展需要的额外调⽤用。并提供抽象
类 abstract LotteryResult doDraw(String uId)，让类的继承者实现。

同时⽅方法的定义使⽤用的是 protected，也就是保证将来外部的调⽤用⽅方不不会调⽤用到此⽅方法，只有调

⽤用到 draw(String uId)，才能让我们完成事件通知。

此种⽅方式的实现就是在抽象类中写好⼀一个基本的⽅方法，在⽅方法中完成新增逻辑的同时，再增加抽象
类的使⽤用。⽽而这个抽象类的定义会有继承者实现。
另外在构造函数中提供了了对事件的定
义； eventManager.subscribe(EventManager.EventType.MQ, new

MQEventListener())。

在使⽤用的时候也是使⽤用枚举的⽅方式进⾏行行通知使⽤用，传了了什什么类型
EventManager.EventType.MQ，就会执⾏行行什什么事件通知，按需添加。

2.5 业务接⼝口实现类

public abstract class LotteryService {

 private EventManager eventManager;

 public LotteryService() {

 eventManager = new EventManager(EventManager.EventType.MQ,

EventManager.EventType.Message);

 eventManager.subscribe(EventManager.EventType.MQ, new

MQEventListener());

 eventManager.subscribe(EventManager.EventType.Message, new

MessageEventListener());

 }

 public LotteryResult draw(String uId) {

 LotteryResult lotteryResult = doDraw(uId);

 // 需要什什么通知就给调⽤用什什么⽅方法
 eventManager.notify(EventManager.EventType.MQ, lotteryResult);

 eventManager.notify(EventManager.EventType.Message,

lotteryResult);

 return lotteryResult;

 }

 protected abstract LotteryResult doDraw(String uId);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

现在再看业务流程的实现中可以看到已经⾮非常简单了了，没有额外的辅助流程，只有核⼼心流程的处
理理。

3. 测试验证

3.1 编写测试类

从调⽤用上来看⼏几乎没有区别，但是这样的实现⽅方式就可以⾮非常⽅方便便的维护代码以及扩展新的需求。

3.2 测试结果

从测试结果上看满⾜足

3

我们的预期，虽然结果是⼀一样的，但只有我们知道了了设计模式的魅⼒力力所
在。

public class LotteryServiceImpl extends LotteryService {

 private MinibusTargetService minibusTargetService = new

MinibusTargetService();

 @Override

 protected LotteryResult doDraw(String uId) {

 // 摇号

 String lottery = minibusTargetService.lottery(uId);

 // 结果
 return new LotteryResult(uId, lottery, new Date());

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

@Test

public void test() {

 LotteryService lotteryService = new LotteryServiceImpl();

 LotteryResult result = lotteryService.draw("2765789109876");

 logger.info("测试结果：{}", JSON.toJSONString(result));

}

1

2

3

4

5

6

23:56:07.597 [main] INFO o.i.d.d.e.listener.MQEventListener - 记录⽤用户

2765789109876 摇号结果(MQ)：很遗憾，编码2765789109876在本次摇号未中签或摇号资格已过
期

23:56:07.600 [main] INFO o.i.d.d.e.l.MessageEventListener - 给⽤用户

2765789109876 发送短信通知(短信)：很遗憾，编码2765789109876在本次摇号未中签或摇号资格

已过期

23:56:07.698 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结
果：{"dateTime":1599737367591,"msg":"很遗憾，编码2765789109876在本次摇号未中签或

摇号资格已过期","uId":"2765789109876"}

Process finished with exit code 0

1

2

3

4

5

六、总结

从我们最基本的过程式开发以及后来使⽤用观察者模式⾯面向对象开发，可以看到设计模式改造后，拆
分出了了核⼼心流程与辅助流程的代码。⼀一般代码中的核⼼心流程不不会经常变化。但辅助流程会随着业务
的各种变化⽽而变化，包括；营销、裂变、促活等等，因此使⽤用设计模式架设代码就显得⾮非常有必

要。
此种设计模式从结构上是满⾜足开闭原则的，当你需要新增其他的监听事件或者修改监听逻辑，是不不
需要改动事件处理理类的。但是可能你不不能控制调⽤用顺序以及需要做⼀一些事件结果的返回继续操作，
所以使⽤用的过程时需要考虑场景的合理理性。
任何⼀一种设计模式有时候都不不是单独使⽤用的，需要结合其他模式共同建设。另外设计模式的使⽤用是
为了了让代码更更加易易于扩展和维护，不不能因为添加设计模式⽽而把结构处理理更更加复杂以及难以维护。这
样的合理理使⽤用的经验需要⼤大量量的实际操作练习⽽而来。

第 7 节：状态模式

写好代码三个关键点

如果把写代码想象成家⾥里里的软装，你肯定会想到家⾥里里需要有⼀一个⾮非常不不错格局最好是南北北通透的，买回
来的家具最好是品牌保证质量量的，之后呢是⼤大⼩小合适，不不能摆放完了了看着别扭。那么把这⼀一过程抽象成
写代码就是需要三个核⼼心的关键点；架构 (房间的格局)、命名 (品牌和质量量)、注释 (尺⼨寸⼤大⼩小说明书)，
只有这三个点都做好才能完成出⼀一套赏⼼心悦⽬目的家。

平原⾛走码

4

易易放难收

上学期间你写了了多少代码？上班⼀一年年你能写多少代码？回家⾃自⼰己学习写了了多少代码？个⼈人素养的技术栈
地基都是⼀一块⼀一块砖码出来的，写的越⼴广越深，根基就越牢固。当根基牢固了了以后在再上层建设就变得
迎刃⽽而解了了，也更更容易易建设了了。往往最难的就是⼀一层⼀一层阶段的突破，突破就像破壳⼀一样，也像夯实地
基，短时间看不不到成绩，也看不不出⾼高度。但以后谁能⾛走的稳，就靠着默默的沉淀。

⼯工程 描述

itstack-demo-design-19-00 场景模拟⼯工程；模拟营销活动操作服务(查询、审核)

itstack-demo-design-19-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-19-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

技术传承的重要性

可能是现在时间节奏太快，⼀一个需求下来恨不不得当天就上线(这个需求很简单，怎么实现我不不管，明天上
线！)，导致团队的⼈人都很慌、很急、很累、很崩溃，最终反反复复的⼈人员更更替，项⽬目在这个过程中
也交接了了N次，⽂文档不不全、代码混乱、错综复杂，谁在后⾯面接⼿手也都只能修修补补，就像烂尾楼。这个
没有传承、没有沉淀的项⽬目，很难跟随业务的发展。最终！根基不不牢，⼀一地鸡⽑毛。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、状态模式介绍

状态模式描述的是⼀一个⾏行行为下的多种状态变更更，⽐比如我们最常⻅见的⼀一个⽹网站的⻚页⾯面，在你登录与不不登录
下展示的内容是略略有差异的(不不登录不不能展示个⼈人信息)，⽽而这种登录与不不登录就是我们通过改变状态，
⽽而让整个⾏行行为发⽣生了了变化。

https://bugstack.cn/assets/images/qrcode.png

⾄至少80后、90后的⼩小伙伴基本都⽤用过这种磁带放⾳音机(可能没有这个好看)，它的上⾯面是⼀一排按钮，当放
⼊入磁带后，通过上⾯面的按钮就可以让放⾳音机播放磁带上的内容(listen to 英语听⼒力力考试)，⽽而且有些按
钮是互斥的，当在某个状态下才可以按另外的按钮(这在设计模式⾥里里也是⼀一个关键的点)。

三、案例例场景模拟

在本案例例中我们模拟营销活动审核状态流转场景(⼀一个活动的上线是多个层级审核上线的)

在上图中也可以看到我们的流程节点中包括了了各个状态到下⼀一个状态扭转的关联条件，⽐比如；审核通过
才能到活动中，⽽而不不能从编辑中直接到活动中，⽽而这些状态的转变就是我们要完成的场景处理理。

⼤大部分程序员基本都开发过类似的业务场景，需要对活动或者⼀一些配置需要审核后才能对外发布，⽽而这
个审核的过程往往会随着系统的重要程度⽽而设⽴立多级控制，来保证⼀一个活动可以安全上线，避免造成资
损。

当然有时候会⽤用到⼀一些审批流的过程配置，也是⾮非常⽅方便便开发类似的流程的，也可以在配置中设定某个
节点的审批⼈人员。但这不不是我们主要体现的点，在本案例例中我们主要是模拟学习对⼀一个活动的多个状态
节点的审核控制。

1. 场景模拟⼯工程

在这个模拟⼯工程⾥里里我们提供了了三个类，包括；状态枚举(Status)、活动对象(ActivityInfo)、
活动服务(ActivityService)，三个服务类。
接下来我们就分别介绍三个类包括的内容。

2. 代码实现

2.1 基本活动信息

⼀一些基本的活动信息；活动ID、活动名称、活动状态、开始时间、结束时间。

2.2 活动枚举状态

itstack-demo-design-19-00

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" ActivityInfo.java
 #"" Status.java
 !"" ActivityService.java

1

2

3

4

5

6

7

8

public class ActivityInfo {

 private String activityId; // 活动ID

 private String activityName; // 活动名称

 private Enum<Status> status; // 活动状态
 private Date beginTime; // 开始时间

 private Date endTime; // 结束时间

 // ...get/set

}

1

2

3

4

5

6

7

8

9

10

public enum Status {

 // 1创建编辑、2待审核、3审核通过(任务扫描成活动中)、4审核拒绝(可以撤审到编辑状态)、

5活动中、6活动关闭、7活动开启(任务扫描成活动中)

 Editing, Check, Pass, Refuse, Doing, Close, Open

}

1

2

3

4

5

6

活动的枚举；1创建编辑、2待审核、3审核通过(任务扫描成活动中)、4审核拒绝(可以撤审到编辑
状态)、5活动中、6活动关闭、7活动开启(任务扫描成活动中)

2.3 活动服务接⼝口

public class ActivityService {

 private static Map<String, Enum<Status>> statusMap = new

ConcurrentHashMap<String, Enum<Status>>();

 public static void init(String activityId, Enum<Status> status) {

 // 模拟查询活动信息
 ActivityInfo activityInfo = new ActivityInfo();

 activityInfo.setActivityId(activityId);

 activityInfo.setActivityName("早起学习打卡领奖活动");

 activityInfo.setStatus(status);

 activityInfo.setBeginTime(new Date());

 activityInfo.setEndTime(new Date());

 statusMap.put(activityId, status);

 }

 /**

 * 查询活动信息
 *

 * @param activityId 活动ID

 * @return 查询结果

 */

 public static ActivityInfo queryActivityInfo(String activityId) {

 // 模拟查询活动信息
 ActivityInfo activityInfo = new ActivityInfo();

 activityInfo.setActivityId(activityId);

 activityInfo.setActivityName("早起学习打卡领奖活动");

 activityInfo.setStatus(statusMap.get(activityId));

 activityInfo.setBeginTime(new Date());

 activityInfo.setEndTime(new Date());

 return activityInfo;

 }

 /**

 * 查询活动状态
 *

 * @param activityId 活动ID

 * @return 查询结果

 */

 public static Enum<Status> queryActivityStatus(String activityId) {

 return statusMap.get(activityId);

 }

 /**

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

在这个静态类中提供了了活动的查询和状态变更更接
⼝口； queryActivityInfo、 queryActivityStatus、 execStatus。

同时使⽤用Map的结构来记录活动ID和状态变化信息，另外还有init⽅方法来初始化活动数据。实际的
开发中这类信息基本都是从数据库或者 Redis中获取。

四、⽤用⼀一坨坨代码实现

这⾥里里我们先使⽤用最粗暴暴的⽅方式来实现功能

对于这样各种状态的变更更，最让我们直接想到的就是使⽤用 if和 else进⾏行行判断处理理。每⼀一个状态可以流

转到下⼀一个什什么状态，都可以使⽤用嵌套的 if实现。

1. ⼯工程结构

整个实现的⼯工程结构⽐比较简单，只包括了了两个
类； ActivityExecStatusController、 Result，⼀一个是处理理流程状态，另外⼀一个是返回的对

象。

2. 代码实现

 * 执⾏行行状态变更更

 *

 * @param activityId 活动ID

 * @param beforeStatus 变更更前状态

 * @param afterStatus 变更更后状态 b
 */

 public static synchronized void execStatus(String activityId,

Enum<Status> beforeStatus, Enum<Status> afterStatus) {

 if (!beforeStatus.equals(statusMap.get(activityId))) return;

 statusMap.put(activityId, afterStatus);

 }

}

44

45

46

47

48

49

50

51

52

53

54

55

itstack-demo-design-19-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" ActivityExecStatusController.java
 !"" Result.java

1

2

3

4

5

6

7

public class ActivityExecStatusController {

 /**

 * 活动状态变更更

 * 1. 编辑中 -> 提审、关闭

 * 2. 审核通过 -> 拒绝、关闭、活动中

1

2

3

4

5

6

 * 3. 审核拒绝 -> 撤审、关闭

 * 4. 活动中 -> 关闭
 * 5. 活动关闭 -> 开启

 * 6. 活动开启 -> 关闭

 *

 * @param activityId 活动ID

 * @param beforeStatus 变更更前状态

 * @param afterStatus 变更更后状态
 * @return 返回结果

 */

 public Result execStatus(String activityId, Enum<Status> beforeStatus,

Enum<Status> afterStatus) {

 // 1. 编辑中 -> 提审、关闭

 if (Status.Editing.equals(beforeStatus)) {

 if (Status.Check.equals(afterStatus) ||

Status.Close.equals(afterStatus)) {

 ActivityService.execStatus(activityId, beforeStatus,

afterStatus);

 return new Result("0000", "变更更状态成功");

 } else {

 return new Result("0001", "变更更状态拒绝");

 }

 }

 // 2. 审核通过 -> 拒绝、关闭、活动中

 if (Status.Pass.equals(beforeStatus)) {

 if (Status.Refuse.equals(afterStatus) ||

Status.Doing.equals(afterStatus) || Status.Close.equals(afterStatus)) {

 ActivityService.execStatus(activityId, beforeStatus,

afterStatus);

 return new Result("0000", "变更更状态成功");

 } else {

 return new Result("0001", "变更更状态拒绝");

 }

 }

 // 3. 审核拒绝 -> 撤审、关闭

 if (Status.Refuse.equals(beforeStatus)) {

 if (Status.Editing.equals(afterStatus) ||

Status.Close.equals(afterStatus)) {

 ActivityService.execStatus(activityId, beforeStatus,

afterStatus);

 return new Result("0000", "变更更状态成功");

 } else {

 return new Result("0001", "变更更状态拒绝");
 }

 }

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

这⾥里里我们只需要看⼀一下代码实现的结构即可。从上到下是⼀一整篇的 ifelse，基本这也是⼤大部分初

级程序员的开发⽅方式。
这样的⾯面向过程式开发⽅方式，对于不不需要改动代码，也不不需要⼆二次迭代的，还是可以使⽤用的(但基
本不不可能不不迭代)。⽽而且随着状态和需求变化，会越来越难以维护，后⾯面的⼈人也不不好看懂并且很容易易
填充其他的流程进去。越来越乱就是从点滴开始的

3. 测试验证

3.1 编写测试类

 // 4. 活动中 -> 关闭

 if (Status.Doing.equals(beforeStatus)) {

 if (Status.Close.equals(afterStatus)) {

 ActivityService.execStatus(activityId, beforeStatus,

afterStatus);

 return new Result("0000", "变更更状态成功");

 } else {

 return new Result("0001", "变更更状态拒绝");

 }

 }

 // 5. 活动关闭 -> 开启

 if (Status.Close.equals(beforeStatus)) {

 if (Status.Open.equals(afterStatus)) {

 ActivityService.execStatus(activityId, beforeStatus,

afterStatus);

 return new Result("0000", "变更更状态成功");

 } else {

 return new Result("0001", "变更更状态拒绝");

 }

 }

 // 6. 活动开启 -> 关闭

 if (Status.Open.equals(beforeStatus)) {

 if (Status.Close.equals(afterStatus)) {

 ActivityService.execStatus(activityId, beforeStatus,

afterStatus);

 return new Result("0000", "变更更状态成功");

 } else {

 return new Result("0001", "变更更状态拒绝");

 }

 }

 return new Result("0001", "⾮非可处理理的活动状态变更更");

 }

}

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

我们的测试代码包括了了两个功能的验证，⼀一个是从编辑中到审核拒绝，另外⼀一个是从编辑中到提

交审核。

因为从我们的场景流程中可以看到，编辑中的活动是不不能直接到审核拒绝的，这中间还需要提

审。

3.2 测试结果

从测试结果和我们的状态流程的流转中可以看到，是符合测试结果预期的。除了了不不好维护外，这样
的开发过程还是蛮快的，但不不建议这么搞！

五、状态模式重构代码

接下来使⽤用状态模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

重构的重点往往是处理理掉 ifelse，⽽而想处理理掉 ifelse基本离不不开接⼝口与抽象类，另外还需要重新改

造代码结构。

1. ⼯工程结构

@Test

public void test() {

 // 初始化数据

 String activityId = "100001";

 ActivityService.init(activityId, Status.Editing);

 ActivityExecStatusController activityExecStatusController = new

ActivityExecStatusController();

 Result resultRefuse =

activityExecStatusController.execStatus(activityId, Status.Editing,

Status.Refuse);

 logger.info("测试结果(编辑中To审核拒绝)：{}",

JSON.toJSONString(resultRefuse));

 Result resultCheck =

activityExecStatusController.execStatus(activityId, Status.Editing,

Status.Check);

 logger.info("测试结果(编辑中To提交审核)：{}",

JSON.toJSONString(resultCheck));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

23:24:30.774 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果(编

辑中To审核拒绝)：{"code":"0001","info":"变更更状态拒绝"}

23:24:30.778 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果(编

辑中To提交审核)：{"code":"0000","info":"变更更状态成功"}

Process finished with exit code 0

1

2

3

4

itstack-demo-design-19-021

状态模式模型结构

以上是状态模式的整个⼯工程结构模型，State是⼀一个抽象类，定义了了各种操作接⼝口(提审、审核、拒
审等)。
右侧的不不同颜⾊色状态与我们场景模拟中的颜⾊色保持⼀一致，是各种状态流程流转的实现操作。这⾥里里的
实现有⼀一个关键点就是每⼀一种状态到下⼀一个状态，都分配到各个实现⽅方法中控制，也就不不需要 if

语⾔言进⾏行行判断了了。
最后是 StateHandler对状态流程的统⼀一处理理，⾥里里⾯面提供 Map结构的各项服务接⼝口调⽤用，也就避

免了了使⽤用 if判断各项状态转变的流程。

2. 代码实现

2.1 定义状态抽象类

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" event
 $ #"" CheckState.java
 $!"" CloseState.java
 $!"" DoingState.java
 $!"" EditingState.java
 $!"" OpenState.java
 $!"" PassState.java
 $!"" RefuseState.java
 #"" Result.java
 #"" State.java
 !"" StateHandler.java

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public abstract class State {

 /**

1

2

3

 * 活动提审

 *

 * @param activityId 活动ID
 * @param currentStatus 当前状态

 * @return 执⾏行行结果

 */

 public abstract Result arraignment(String activityId, Enum<Status>

currentStatus);

 /**

 * 审核通过

 *

 * @param activityId 活动ID

 * @param currentStatus 当前状态
 * @return 执⾏行行结果

 */

 public abstract Result checkPass(String activityId, Enum<Status>

currentStatus);

 /**

 * 审核拒绝

 *

 * @param activityId 活动ID

 * @param currentStatus 当前状态

 * @return 执⾏行行结果
 */

 public abstract Result checkRefuse(String activityId, Enum<Status>

currentStatus);

 /**

 * 撤审撤销

 *

 * @param activityId 活动ID

 * @param currentStatus 当前状态

 * @return 执⾏行行结果

 */

 public abstract Result checkRevoke(String activityId, Enum<Status>

currentStatus);

 /**

 * 活动关闭
 *

 * @param activityId 活动ID

 * @param currentStatus 当前状态

 * @return 执⾏行行结果

 */

 public abstract Result close(String activityId, Enum<Status>

currentStatus);

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

在整个接⼝口中提供了了各项状态流转服务的接⼝口，例例如；活动提审、审核通过、审核拒绝、撤审撤销
等7个⽅方法。
在这些⽅方法中所有的⼊入参都是⼀一样的，activityId(活动ID)、currentStatus(当前状态)，只有他们
的具体实现是不不同的。

2.2 部分状态流转实现

编辑

 /**

 * 活动开启

 *

 * @param activityId 活动ID

 * @param currentStatus 当前状态

 * @return 执⾏行行结果
 */

 public abstract Result open(String activityId, Enum<Status>

currentStatus);

 /**

 * 活动执⾏行行

 *

 * @param activityId 活动ID

 * @param currentStatus 当前状态

 * @return 执⾏行行结果

 */

 public abstract Result doing(String activityId, Enum<Status>

currentStatus);

}

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

public class EditingState extends State {

 public Result arraignment(String activityId, Enum<Status>

currentStatus) {

 ActivityService.execStatus(activityId, currentStatus,

Status.Check);

 return new Result("0000", "活动提审成功");

 }

 public Result checkPass(String activityId, Enum<Status> currentStatus)

{

 return new Result("0001", "编辑中不不可审核通过");

 }

 public Result checkRefuse(String activityId, Enum<Status>

currentStatus) {

 return new Result("0001", "编辑中不不可审核拒绝");

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

提审

 @Override

 public Result checkRevoke(String activityId, Enum<Status>

currentStatus) {

 return new Result("0001", "编辑中不不可撤销审核");

 }

 public Result close(String activityId, Enum<Status> currentStatus) {

 ActivityService.execStatus(activityId, currentStatus,

Status.Close);

 return new Result("0000", "活动关闭成功");

 }

 public Result open(String activityId, Enum<Status> currentStatus) {

 return new Result("0001", "⾮非关闭活动不不可开启");

 }

 public Result doing(String activityId, Enum<Status> currentStatus) {

 return new Result("0001", "编辑中活动不不可执⾏行行活动中变更更");

 }

}

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

public class CheckState extends State {

 public Result arraignment(String activityId, Enum<Status>

currentStatus) {

 return new Result("0001", "待审核状态不不可重复提审");

 }

 public Result checkPass(String activityId, Enum<Status> currentStatus)

{

 ActivityService.execStatus(activityId, currentStatus,

Status.Pass);

 return new Result("0000", "活动审核通过完成");

 }

 public Result checkRefuse(String activityId, Enum<Status>

currentStatus) {

 ActivityService.execStatus(activityId, currentStatus,

Status.Refuse);

 return new Result("0000", "活动审核拒绝完成");

 }

 @Override

 public Result checkRevoke(String activityId, Enum<Status>

currentStatus) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

这⾥里里提供了了两个具体实现类的内容，编辑状态和提审状态。
例例如在这两个实现类中， checkRefuse这个⽅方法对于不不同的类中有不不同的实现，也就是不不同状态

下能做的下⼀一步流转操作已经可以在每⼀一个⽅方法中具体控制了了。
其他5个类的操作是类似的具体就不不在这⾥里里演示了了，⼤大部分都是重复代码。可以通过源码进⾏行行学习
理理解。

2.3 状态处理理服务

 ActivityService.execStatus(activityId, currentStatus,

Status.Editing);

 return new Result("0000", "活动审核撤销回到编辑中");

 }

 public Result close(String activityId, Enum<Status> currentStatus) {

 ActivityService.execStatus(activityId, currentStatus,

Status.Close);

 return new Result("0000", "活动审核关闭完成");

 }

 public Result open(String activityId, Enum<Status> currentStatus) {

 return new Result("0001", "⾮非关闭活动不不可开启");

 }

 public Result doing(String activityId, Enum<Status> currentStatus) {

 return new Result("0001", "待审核活动不不可执⾏行行活动中变更更");

 }

}

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

public class StateHandler {

 private Map<Enum<Status>, State> stateMap = new

ConcurrentHashMap<Enum<Status>, State>();

 public StateHandler() {

 stateMap.put(Status.Check, new CheckState()); // 待审核

 stateMap.put(Status.Close, new CloseState()); // 已关闭

 stateMap.put(Status.Doing, new DoingState()); // 活动中
 stateMap.put(Status.Editing, new EditingState()); // 编辑中

 stateMap.put(Status.Open, new OpenState()); // 已开启

 stateMap.put(Status.Pass, new PassState()); // 审核通过

 stateMap.put(Status.Refuse, new RefuseState()); // 审核拒绝

 }

 public Result arraignment(String activityId, Enum<Status>

currentStatus) {

 return stateMap.get(currentStatus).arraignment(activityId,

currentStatus);

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

这是对状态服务的统⼀一控制中⼼心，可以看到在构造函数中提供了了所有状态和实现的具体关联，放到
Map数据结构中。
同时提供了了不不同名称的接⼝口操作类，让外部调⽤用⽅方可以更更加容易易的使⽤用此项功能接⼝口，⽽而不不需要像
在 itstack-demo-design-19-01例例⼦子中还得传两个状态来判断。

3. 测试验证

3.1 编写测试类(Editing2Arraignment)

 public Result checkPass(String activityId, Enum<Status> currentStatus)

{

 return stateMap.get(currentStatus).checkPass(activityId,

currentStatus);

 }

 public Result checkRefuse(String activityId, Enum<Status>

currentStatus) {

 return stateMap.get(currentStatus).checkRefuse(activityId,

currentStatus);

 }

 public Result checkRevoke(String activityId, Enum<Status>

currentStatus) {

 return stateMap.get(currentStatus).checkRevoke(activityId,

currentStatus);

 }

 public Result close(String activityId, Enum<Status> currentStatus) {

 return stateMap.get(currentStatus).close(activityId,

currentStatus);

 }

 public Result open(String activityId, Enum<Status> currentStatus) {

 return stateMap.get(currentStatus).open(activityId,

currentStatus);

 }

 public Result doing(String activityId, Enum<Status> currentStatus) {

 return stateMap.get(currentStatus).doing(activityId,

currentStatus);

 }

}

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

测试结果

测试编辑中To提审活动，的状态流转。

3.2 编写测试类(Editing2Open)

测试结果

@Test

public void test_Editing2Arraignment() {

 String activityId = "100001";

 ActivityService.init(activityId, Status.Editing);

 StateHandler stateHandler = new StateHandler();

 Result result = stateHandler.arraignment(activityId, Status.Editing);

 logger.info("测试结果(编辑中To提审活动)：{}", JSON.toJSONString(result));

 logger.info("活动信息：{} 状态：{}",

JSON.toJSONString(ActivityService.queryActivityInfo(activityId)),

JSON.toJSONString(ActivityService.queryActivityInfo(activityId).getStatus()

));

}

1

2

3

4

5

6

7

8

9

23:59:20.883 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果(编
辑中To提审活动)：{"code":"0000","info":"活动提审成功"}

23:59:20.907 [main] INFO org.itstack.demo.design.test.ApiTest - 活动信

息：{"activityId":"100001","activityName":"早起学习打卡领奖活

动","beginTime":1593694760892,"endTime":1593694760892,"status":"Check"} 状

态："Check"

Process finished with exit code 0

1

2

3

4

@Test

public void test_Editing2Open() {

 String activityId = "100001";

 ActivityService.init(activityId, Status.Editing);

 StateHandler stateHandler = new StateHandler();

 Result result = stateHandler.open(activityId, Status.Editing);

 logger.info("测试结果(编辑中To开启活动)：{}", JSON.toJSONString(result));
 logger.info("活动信息：{} 状态：{}",

JSON.toJSONString(ActivityService.queryActivityInfo(activityId)),

JSON.toJSONString(ActivityService.queryActivityInfo(activityId).getStatus()

));

}

1

2

3

4

5

6

7

8

9

测试编辑中To开启活动，的状态流转。

3.3 编写测试类(Refuse2Doing)

测试结果

测试拒绝To活动中，的状态流转。

3.4 编写测试类(Refuse2Revoke)

23:59:36.904 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果(编
辑中To开启活动)：{"code":"0001","info":"⾮非关闭活动不不可开启"}

23:59:36.914 [main] INFO org.itstack.demo.design.test.ApiTest - 活动信

息：{"activityId":"100001","activityName":"早起学习打卡领奖活

动","beginTime":1593694776907,"endTime":1593694776907,"status":"Editing"} 状

态："Editing"

Process finished with exit code 0

1

2

3

4

@Test

public void test_Refuse2Doing() {

 String activityId = "100001";

 ActivityService.init(activityId, Status.Refuse);

 StateHandler stateHandler = new StateHandler();

 Result result = stateHandler.doing(activityId, Status.Refuse);

 logger.info("测试结果(拒绝To活动中)：{}", JSON.toJSONString(result));
 logger.info("活动信息：{} 状态：{}",

JSON.toJSONString(ActivityService.queryActivityInfo(activityId)),

JSON.toJSONString(ActivityService.queryActivityInfo(activityId).getStatus()

));

}

1

2

3

4

5

6

7

8

9

23:59:46.339 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果(拒

绝To活动中)：{"code":"0001","info":"审核拒绝不不可执⾏行行活动为进⾏行行中"}

23:59:46.352 [main] INFO org.itstack.demo.design.test.ApiTest - 活动信

息：{"activityId":"100001","activityName":"早起学习打卡领奖活
动","beginTime":1593694786342,"endTime":1593694786342,"status":"Refuse"} 状

态："Refuse"

Process finished with exit code 0

1

2

3

4

测试结果

测试测试结果(拒绝To撤审)，的状态流转。
综上以上四个测试类分别模拟了了不不同状态之间的有效流转和拒绝流转，不不同的状态服务处理理不不同

的服务内容。

六、总结

从以上的两种⽅方式对⼀一个需求的实现中可以看到，在第⼆二种使⽤用设计模式处理理后已经没有了了
ifelse，代码的结构也更更加清晰易易于扩展。这就是设计模式的好处，可以⾮非常强⼤大的改变原有代

码的结构，让以后的扩展和维护都变得容易易些。
在实现结构的编码⽅方式上可以看到这不不再是⾯面向过程的编程，⽽而是⾯面向对象的结构。并且这样的设
计模式满⾜足了了单⼀一职责和开闭原则，当你只有满⾜足这样的结构下才会发现代码的扩展是容易易的，

也就是增加和修改功能不不会影响整体的变化。
但如果状态和各项流转较多像本⽂文的案例例中，就会产⽣生较多的实现类。因此可能也会让代码的实现
上带来了了时间成本，因为如果遇到这样的场景可以按需评估投⼊入回报率。主要点在于看是否经常修
改、是否可以做成组件化、抽离业务与⾮非业务功能。

@Test

public void test_Refuse2Revoke() {

 String activityId = "100001";

 ActivityService.init(activityId, Status.Refuse);

 StateHandler stateHandler = new StateHandler();

 Result result = stateHandler.checkRevoke(activityId, Status.Refuse);

 logger.info("测试结果(拒绝To撤审)：{}", JSON.toJSONString(result));

 logger.info("活动信息：{} 状态：{}",

JSON.toJSONString(ActivityService.queryActivityInfo(activityId)),

JSON.toJSONString(ActivityService.queryActivityInfo(activityId).getStatus()

));

}

1

2

3

4

5

6

7

8

9

23:59:50.197 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果(拒
绝To撤审)：{"code":"0000","info":"撤销审核完成"}

23:59:50.208 [main] INFO org.itstack.demo.design.test.ApiTest - 活动信

息：{"activityId":"100001","activityName":"早起学习打卡领奖活

动","beginTime":1593694810201,"endTime":1593694810201,"status":"Editing"} 状

态："Editing"

Process finished with exit code 0

1

2

3

4

⼯工程 描述

itstack-demo-design-20-01 使⽤用⼀一坨代码实现业务需求

itstack-demo-design-20-02 通过设计模式优化改造代码，产⽣生对⽐比性从⽽而学习

第 8 节：策略略模式

⽂文⽆无第⼀一，武⽆无第⼆二

不不同⽅方向但同样努⼒力力的⼈人，都有⾃自身的价值和亮点，也都是可以互相学习的。不不要太过于⽤用⾃自⼰己⼿手⾥里里的
⽭矛去攻击别⼈人的盾

5

，哪怕⼀一时争辩过了了也多半可能是你被安放的⻆角⾊色不不同。取别⼈人之强补⾃自⼰己之弱，
⽭矛与盾的结合可能就是坦克。

能把复杂的知识讲的简单很重要

在学习的过程中我们看过很多资料料、视频、⽂文档等，因为现在资料料视频都较多所以往往⼀一个知识点会有
多种多样的视频形式讲解。除了了推⼴广营销以外，确实有很多⼈人的视频讲解⾮非常优秀，例例如李李永乐⽼老老师的
短视频课，可以在⼀一个⿊黑板上把那么复杂的知识，讲解的那么容易易理理解，那么透彻。⽽而我们学习编程的
⼈人也是，不不只是要学会把知识点讲明⽩白，也要写明⽩白。

6

提升⾃自⼰己的眼界交往更更多同好

有时候圈⼦子很重要，就像上学期间⼤大家都会发现班⾥里里有这样⼀一类学⽣生

7

不不怎么听课，但是就是学习好。
那假如让他回家呆着，不不能在课堂⾥里里呢？类似的圈⼦子还有；图书馆、⽹网吧、⻋车友群、技术群等等，都可
以给你带来同类爱好的⼈人所分享出来的技能或者⼤大家⼀一起烘托出的氛围帮你成⻓长。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、策略略模式介绍

https://bugstack.cn/assets/images/qrcode.png

策略略模式是⼀一种⾏行行为模式，也是替代⼤大量量 ifelse的利利器器。它所能帮你解决的是场景，⼀一般是具有同类

可替代的⾏行行为逻辑算法场景。⽐比如；不不同类型的交易易⽅方式(信⽤用卡、⽀支付宝、微信)、⽣生成唯⼀一ID策略略
(UUID、DB⾃自增、DB+Redis、雪花算法、Leaf算法)等，都可以使⽤用策略略模式进⾏行行⾏行行为包装，供给外部
使⽤用。

策略略模式也有点像三国演义中诸葛亮给刘关张的锦囊；

第⼀一个锦囊：⻅见乔国⽼老老，并把刘备娶亲的事情du搞得东吴⼈人尽皆知。
第⼆二个锦囊：⽤用谎⾔言（曹操打荆州）骗泡在温柔乡⾥里里的刘备回去。
第三个锦囊：让孙夫⼈人摆平东吴的追兵，她是孙权妹妹，东吴将领惧她三分。

三、案例例场景模拟

在本案例例中我们模拟在购买商品时候使⽤用的各种类型优惠券(满减、直减、折扣、n元购)

这个场景⼏几乎也是⼤大家的⼀一个⽇日常购物省钱渠道，购买商品的时候都希望找⼀一些优惠券，让购买的商品
更更加实惠。⽽而且到了了⼤大促的时候就会有更更多的优惠券需要计算那些商品⼀一起购买更更加优惠！！！

这样的场景有时候⽤用户⽤用起来还是蛮爽的，但是最初这样功能的设定以及产品的不不断迭代，对于程序员

!

开发还是不不太容易易的。因为这⾥里里包括了了很多的规则和优惠逻辑，所以我们模拟其中的⼀一个计算优惠的
⽅方式，使⽤用策略略模式来实现。

四、⽤用⼀一坨坨代码实现

这⾥里里我们先使⽤用最粗暴暴的⽅方式来实现功能

对于优惠券的设计最初可能⾮非常简单，就是⼀一个⾦金金额的抵扣，也没有现在这么多种类型。所以如果没有
这样场景的经验话，往往设计上也是⾮非常简单的。但随着产品功能的不不断迭代，如果程序最初设计的不不
具备很好的扩展性，那么往后就会越来越混乱。

1. ⼯工程结构

itstack-demo-design-20-01

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 !"" CouponDiscountService.java

1

2

3

4

5

6

⼀一坨坨⼯工程的结构很简单，也是最直接的⾯面向过程开发⽅方式。

2. 代码实现

以上是不不同类型的优惠券计算折扣后的实际⾦金金额。
⼊入参包括；优惠券类型、优惠券⾦金金额、商品⾦金金额，因为有些优惠券是满多少减少多少，所以增加
了了 typeExt类型。这也是⽅方法的不不好扩展性问题。

最后是整个的⽅方法体中对优惠券抵扣⾦金金额的实现，最开始可能是⼀一个最简单的优惠券，后⾯面随着产
品功能的增加，不不断的扩展 if语句句。实际的代码可能要⽐比这个多很多。

/**

 * 博客：https://bugstack.cn - 沉淀、分享、成⻓长，让⾃自⼰己和他⼈人都能有所收获！

 * 公众号：bugstack⾍虫洞洞栈

 * Create by ⼩小傅哥(fustack) @2020

 * 优惠券折扣计算接⼝口
 * <p>

 * 优惠券类型；

 * 1. 直减券

 * 2. 满减券

 * 3. 折扣券
 * 4. n元购

 */

public class CouponDiscountService {

 public double discountAmount(int type, double typeContent, double

skuPrice, double typeExt) {

 // 1. 直减券

 if (1 == type) {

 return skuPrice - typeContent;

 }

 // 2. 满减券
 if (2 == type) {

 if (skuPrice < typeExt) return skuPrice;

 return skuPrice - typeContent;

 }

 // 3. 折扣券
 if (3 == type) {

 return skuPrice * typeContent;

 }

 // 4. n元购

 if (4 == type) {

 return typeContent;

 }

 return 0D;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

五、策略略模式重构代码

接下来使⽤用策略略模式来进⾏行行代码优化，也算是⼀一次很⼩小的重构。

与上⾯面⾯面向流程式的开发这⾥里里会使⽤用设计模式，优惠代码结构，增强整体的扩展性。

1. ⼯工程结构

策略略模式模型结构

整体的结构模式并不不复杂，主要体现的不不同类型的优惠券在计算优惠券⽅方式的不不同计算策略略。
这⾥里里包括⼀一个借⼝口类(ICouponDiscount)以及四种优惠券类型的实现⽅方式。
最后提供了了策略略模式的上下控制类处理理，整体的策略略服务。

2. 代码实现

2.1 优惠券接⼝口

itstack-demo-design-20-02

!"" src
 !"" main
 !"" java
 !"" org.itstack.demo.design
 #"" event
 $!"" MJCouponDiscount.java
 $!"" NYGCouponDiscount.java
 $!"" ZJCouponDiscount.java
 $!"" ZKCouponDiscount.java
 #"" Context.java
 !"" ICouponDiscount.java

1

2

3

4

5

6

7

8

9

10

11

12

定义了了优惠券折扣接⼝口，也增加了了泛型⽤用于不不同类型的接⼝口可以传递不不同的类型参数。
接⼝口中包括商品⾦金金额以及出参返回最终折扣后的⾦金金额，这⾥里里在实际开发中会⽐比现在的接⼝口参数多⼀一
些，但核⼼心逻辑是这些。

2.2 优惠券接⼝口实现

满减

直减

public interface ICouponDiscount<T> {

 /**

 * 优惠券⾦金金额计算

 * @param couponInfo 券折扣信息；直减、满减、折扣、N元购
 * @param skuPrice sku⾦金金额

 * @return 优惠后⾦金金额

 */

 BigDecimal discountAmount(T couponInfo, BigDecimal skuPrice);

}

1

2

3

4

5

6

7

8

9

10

11

12

public class MJCouponDiscount implements

ICouponDiscount<Map<String,String>> {

 /**

 * 满减计算

 * 1. 判断满⾜足x元后-n元，否则不不减

 * 2. 最低⽀支付⾦金金额1元

 */

 public BigDecimal discountAmount(Map<String,String> couponInfo,

BigDecimal skuPrice) {

 String x = couponInfo.get("x");

 String o = couponInfo.get("n");

 // ⼩小于商品⾦金金额条件的，直接返回商品原价

 if (skuPrice.compareTo(new BigDecimal(x)) < 0) return skuPrice;

 // 减去优惠⾦金金额判断

 BigDecimal discountAmount = skuPrice.subtract(new BigDecimal(o));

 if (discountAmount.compareTo(BigDecimal.ZERO) < 1) return

BigDecimal.ONE;

 return discountAmount;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

public class ZJCouponDiscount implements ICouponDiscount<Double> {1

折扣

N元购

 /**

 * 直减计算

 * 1. 使⽤用商品价格减去优惠价格

 * 2. 最低⽀支付⾦金金额1元

 */

 public BigDecimal discountAmount(Double couponInfo, BigDecimal

skuPrice) {

 BigDecimal discountAmount = skuPrice.subtract(new

BigDecimal(couponInfo));

 if (discountAmount.compareTo(BigDecimal.ZERO) < 1) return

BigDecimal.ONE;

 return discountAmount;

 }

}

2

3

4

5

6

7

8

9

10

11

12

13

14

public class ZKCouponDiscount implements ICouponDiscount<Double> {

 /**

 * 折扣计算
 * 1. 使⽤用商品价格乘以折扣⽐比例例，为最后⽀支付⾦金金额

 * 2. 保留留两位⼩小数

 * 3. 最低⽀支付⾦金金额1元

 */

 public BigDecimal discountAmount(Double couponInfo, BigDecimal

skuPrice) {

 BigDecimal discountAmount = skuPrice.multiply(new

BigDecimal(couponInfo)).setScale(2, BigDecimal.ROUND_HALF_UP);

 if (discountAmount.compareTo(BigDecimal.ZERO) < 1) return

BigDecimal.ONE;

 return discountAmount;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

以上是四种不不同类型的优惠券计算折扣⾦金金额的策略略⽅方式，可以从代码中看到每⼀一种优惠⽅方式的优惠
⾦金金额。

2.3 策略略控制类

策略略模式的控制类主要是外部可以传递不不同的策略略实现，在通过统⼀一的⽅方法执⾏行行优惠策略略计算。
另外这⾥里里也可以包装成map结构，让外部只需要对应的泛型类型即可使⽤用相应的服务。

3. 测试验证

3.1 编写测试类(直减优惠)

public class NYGCouponDiscount implements ICouponDiscount<Double> {

 /**

 * n元购购买

 * 1. ⽆无论原价多少钱都固定⾦金金额购买

 */

 public BigDecimal discountAmount(Double couponInfo, BigDecimal

skuPrice) {

 return new BigDecimal(couponInfo);

 }

}

1

2

3

4

5

6

7

8

9

10

11

public class Context<T> {

 private ICouponDiscount<T> couponDiscount;

 public Context(ICouponDiscount<T> couponDiscount) {

 this.couponDiscount = couponDiscount;

 }

 public BigDecimal discountAmount(T couponInfo, BigDecimal skuPrice) {

 return couponDiscount.discountAmount(couponInfo, skuPrice);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

@Test

public void test_zj() {

 // 直减；100-10，商品100元
 Context<Double> context = new Context<Double>(new ZJCouponDiscount());

 BigDecimal discountAmount = context.discountAmount(10D, new

BigDecimal(100));

 logger.info("测试结果：直减优惠后⾦金金额 {}", discountAmount);

}

1

2

3

4

5

6

7

测试结果

3.2 编写测试类(满减优惠)

测试结果

3.3 编写测试类(折扣优惠)

测试结果

15:43:22.035 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：直

减优惠后⾦金金额 90

Process finished with exit code 0

1

2

3

@Test

public void test_mj() {

 // 满100减10，商品100元

 Context<Map<String,String>> context = new Context<Map<String,String>>

(new MJCouponDiscount());

 Map<String,String> mapReq = new HashMap<String, String>();

 mapReq.put("x","100");

 mapReq.put("n","10");

 BigDecimal discountAmount = context.discountAmount(mapReq, new

BigDecimal(100));

 logger.info("测试结果：满减优惠后⾦金金额 {}", discountAmount);

}

1

2

3

4

5

6

7

8

9

10

15:43:42.695 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：满

减优惠后⾦金金额 90

Process finished with exit code 0

1

2

3

@Test

public void test_zk() {

 // 折扣9折，商品100元

 Context<Double> context = new Context<Double>(new ZKCouponDiscount());

 BigDecimal discountAmount = context.discountAmount(0.9D, new

BigDecimal(100));

 logger.info("测试结果：折扣9折后⾦金金额 {}", discountAmount);

}

1

2

3

4

5

6

7

15:44:05.602 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：折
扣9折后⾦金金额 90.00

Process finished with exit code 0

1

2

3

3.4 编写测试类(n元购优惠)

测试结果

以上四组测试分别验证了了不不同类型优惠券的优惠策略略，测试结果是满⾜足我们的预期。
这⾥里里四种优惠券最终都是在原价 100元上折扣 10元，最终⽀支付 90元。

六、总结

以上的策略略模式案例例相对来说不不并不不复杂，主要的逻辑都是体现在关于不不同种类优惠券的计算折扣
策略略上。结构相对来说也⽐比较简单，在实际的开发中这样的设计模式也是⾮非常常⽤用的。另外这样的
设计与命令模式、适配器器模式结构相似，但是思路路是有差异的。
通过策略略设计模式的使⽤用可以把我们⽅方法中的if语句句优化掉，⼤大量量的if语句句使⽤用会让代码难以扩
展，也不不好维护，同时在后期遇到各种问题也很难维护。在使⽤用这样的设计模式后可以很好的满⾜足
隔离性与和扩展性，对于不不断新增的需求也⾮非常⽅方便便承接。
策略略模式、适配器器模式、组合模式等，在⼀一些结构上是⽐比较相似的，但是每⼀一个模式是有⾃自⼰己的

逻辑特点，在使⽤用的过程中最佳的⽅方式是经过较多的实践来吸取经验，为后续的研发设计提供更更好
的技术输出。

@Test

public void test_nyg() {

 // n元购；100-10，商品100元
 Context<Double> context = new Context<Double>(new NYGCouponDiscount());

 BigDecimal discountAmount = context.discountAmount(90D, new

BigDecimal(100));

 logger.info("测试结果：n元购优惠后⾦金金额 {}", discountAmount);

1

2

3

4

5

6

7

15:44:24.700 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：n

元购优惠后⾦金金额 90

Process finished with exit code 0

1

2

3

⼯工程 描述

itstack-demo-design-21-00 场景模拟⼯工程；模拟爬⾍虫商品⽣生成海海报场景

第 9 节：模板模式

黎明前的坚守，的住吗？

有⼈人举过这样⼀一个例例⼦子，先给你张北北⼤大的录取通知书，但要求你每天5点起床，12点睡觉

8

，刻苦学
习，勤勤奋上进。只要你坚持三年年，这张通知书就有效。如果是你，你能坚持吗？其实对于这个例例⼦子很难
在我们的⼈人⽣生中出现，因为它⽬目标明确，有准确的⾏行行军路路线。就像你是⼟土豪家庭，家⾥里里给你安排的明明
⽩白⽩白⼀一样，只要你按照这个⽅方式⾛走就不不会有问题。可⼤大多数时候我们并没有这样的路路线，甚⾄至不不知道多
久到达⾃自⼰己的黎明。但！谁⼜又不不渴望⻅见到黎明呢，坚持吧！

不不要轻易易被洗脑

键盘侠

⌨

、⽹网络喷壶，⼏几乎当你努⼒力力坚持⼀一件事的时候，在这条路路上会遇到形形⾊色⾊色的⼈人和事。有时

候接收建议完善⾃自⼰己是有必要的，但不不能放弃⾃自⼰己的初⼼心和底线，有时候只坚持⾃自⼰己也是难能可贵的。
⼦子路路之勇，⼦子贡之辩，冉有之智，此三⼦子者，皆天下之所谓难能⽽而可贵者也。阳光和努⼒力力是这个世界最温暖

的东⻄西，加油坚持好⾃自⼰己的选的路路。

有时还好坚持了了

当你为⾃自⼰己的⼀一个决定⽽而感到万分开⼼心

2

时，是不不是也⾮非常感谢⾃自⼰己还好坚持了了。坚持、努⼒力力、终身学
习，似乎在程序员这个⾏行行业是离不不开的，当你意愿于把这当做⼀一份可以努⼒力力的爱好时，你就会愿意为此
⽽而努⼒力力。⽽而我们很难说只在机会要来时准备，⽽而是⼀一直努⼒力力等待机会。也就是很多⼈人说的别⼈人抓住机会
是因为⼀一直在准备着。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、模版模式介绍

模板模式的核⼼心设计思路路是通过在，抽象类中定义抽象⽅方法的执⾏行行顺序，并将抽象⽅方法设定为只有⼦子类
实现，但不不设计独⽴立访问的⽅方法。简单说也就是把你安排的明明⽩白⽩白的。

就像⻄西游记的99⼋八⼗十⼀一难，基本每⼀一关都是；师傅被掳⾛走、打妖怪、妖怪被收⾛走，具体什什么妖怪你⾃自⼰己
定义，怎么打你想办法，最后收⾛走还是弄弄死看你本事，我只定义执⾏行行顺序和基本策略略，具体的每⼀一难由
观⾳音来安排。

三、案例例场景模拟

https://bugstack.cn/assets/images/qrcode.png

在本案例例中我们模拟爬⾍虫各类电商商品，⽣生成营销推⼴广海海报场景

关于模版模式的核⼼心点在于由抽象类定义抽象⽅方法执⾏行行策略略，也就是说⽗父类规定了了好⼀一系列列的执⾏行行标
准，这些标准的串串联成⼀一整套业务流程。

在这个场景中我们模拟爬⾍虫爬取各类商家的商品信息，⽣生成推⼴广海海报(海海报中含带个⼈人的邀请码)赚取商品
返利利。声明，这⾥里里是模拟爬取，并没有真的爬取

⽽而整个的爬取过程分为；模拟登录、爬取信息、⽣生成海海报，这三个步骤，另外；

1. 因为有些商品只有登录后才可以爬取，并且登录可以看到⼀一些特定的价格这与未登录⽤用户看到的价
格不不同。

2. 不不同的电商⽹网站爬取⽅方式不不同，解析⽅方式也不不同，因此可以作为每⼀一个实现类中的特定实现。
3. ⽣生成海海报的步骤基本⼀一样，但会有特定的商品来源标识。所以这样三个步骤可以使⽤用模版模式来设
定，并有具体的场景做⼦子类实现。

四、模版模式搭建⼯工程

模版模式的业务场景可能在平时的开发中并不不是很多，主要因为这个设计模式会在抽象类中定义逻辑⾏行行
为的执⾏行行顺序。⼀一般情况下，我们⽤用的抽象类定义的逻辑⾏行行为都⽐比较轻量量级或者没有，只是提供⼀一些基
本⽅方法公共调⽤用和实现。

但如果遇到适合的场景使⽤用这样的设计模式也是⾮非常⽅方便便的，因为他可以控制整套逻辑的执⾏行行顺序和统
⼀一的输⼊入、输出，⽽而对于实现⽅方只需要关⼼心好⾃自⼰己的业务逻辑即可。

⽽而在我们这个场景中，只需要记住这三步的实现即可；模拟登录、爬取信息、⽣生成海海报

1. ⼯工程结构

模版模式模型结构

以上的代码结构还是⽐比较简单的，⼀一个定义了了抽象⽅方法执⾏行行顺序的核⼼心抽象类，以及三个模拟具体

itstack-demo-design-21-00

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" group
 $ $ #"" DangDangNetMall.java
 $ $ #"" JDNetMall.java
 $ $!"" TaoBaoNetMall.java
 $ #"" HttpClient.java
 $!"" NetMall.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

的实现(京东、淘宝、当当)的电商服务。

2. 代码实现

2.1 定义执⾏行行顺序的抽象类

这个类是此设计模式的灵魂
定义可被外部访问的⽅方法 generateGoodsPoster，⽤用于⽣生成商品推⼴广海海报

generateGoodsPoster 在⽅方法中定义抽象⽅方法的执⾏行行顺序 1 2 3 步

/**

 * 基础电商推⼴广服务

 * 1. ⽣生成最优价商品海海报
 * 2. 海海报含带推⼴广邀请码

 */

public abstract class NetMall {

 protected Logger logger = LoggerFactory.getLogger(NetMall.class);

 String uId; // ⽤用户ID

 String uPwd; // ⽤用户密码

 public NetMall(String uId, String uPwd) {

 this.uId = uId;

 this.uPwd = uPwd;

 }

 /**

 * ⽣生成商品推⼴广海海报

 *

 * @param skuUrl 商品地址(京东、淘宝、当当)

 * @return 海海报图⽚片base64位信息

 */

 public String generateGoodsPoster(String skuUrl) {

 if (!login(uId, uPwd)) return null; // 1. 验证登录
 Map<String, String> reptile = reptile(skuUrl); // 2. 爬⾍虫商品

 return createBase64(reptile); // 3. 组装海海报

 }

 // 模拟登录
 protected abstract Boolean login(String uId, String uPwd);

 // 爬⾍虫提取商品信息(登录后的优惠价格)

 protected abstract Map<String, String> reptile(String skuUrl);

 // ⽣生成商品海海报信息
 protected abstract String createBase64(Map<String, String> goodsInfo);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

提供三个具体的抽象⽅方法，让外部继承⽅方实现；模拟登录(login)、模拟爬取(reptile)、⽣生成海海
报(createBase64)

2.2 模拟爬⾍虫京东

模拟登录
爬取信息，这⾥里里只是把 title的信息爬取后的结果截取出来。

模拟创建 base64图⽚片的⽅方法

2.3 模拟爬⾍虫淘宝

public class JDNetMall extends NetMall {

 public JDNetMall(String uId, String uPwd) {

 super(uId, uPwd);

 }

 public Boolean login(String uId, String uPwd) {

 logger.info("模拟京东⽤用户登录 uId：{} uPwd：{}", uId, uPwd);

 return true;

 }

 public Map<String, String> reptile(String skuUrl) {

 String str = HttpClient.doGet(skuUrl);

 Pattern p9 = Pattern.compile("(?<=title\\>).*(?=</title)");

 Matcher m9 = p9.matcher(str);

 Map<String, String> map = new ConcurrentHashMap<String, String>();

 if (m9.find()) {

 map.put("name", m9.group());

 }

 map.put("price", "5999.00");

 logger.info("模拟京东商品爬⾍虫解析：{} | {} 元 {}", map.get("name"),

map.get("price"), skuUrl);

 return map;

 }

 public String createBase64(Map<String, String> goodsInfo) {

 BASE64Encoder encoder = new BASE64Encoder();

 logger.info("模拟⽣生成京东商品base64海海报");

 return encoder.encode(JSON.toJSONString(goodsInfo).getBytes());

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

public class TaoBaoNetMall extends NetMall {

 public TaoBaoNetMall(String uId, String uPwd) {

 super(uId, uPwd);

 }

1

2

3

4

5

同上，模拟登录和爬取以及创建图⽚片的 base64

2.4 模拟爬⾍虫当当

 @Override

 public Boolean login(String uId, String uPwd) {

 logger.info("模拟淘宝⽤用户登录 uId：{} uPwd：{}", uId, uPwd);

 return true;

 }

 @Override

 public Map<String, String> reptile(String skuUrl) {

 String str = HttpClient.doGet(skuUrl);

 Pattern p9 = Pattern.compile("(?<=title\\>).*(?=</title)");

 Matcher m9 = p9.matcher(str);

 Map<String, String> map = new ConcurrentHashMap<String, String>();

 if (m9.find()) {

 map.put("name", m9.group());

 }

 map.put("price", "4799.00");

 logger.info("模拟淘宝商品爬⾍虫解析：{} | {} 元 {}", map.get("name"),

map.get("price"), skuUrl);

 return map;

 }

 @Override

 public String createBase64(Map<String, String> goodsInfo) {

 BASE64Encoder encoder = new BASE64Encoder();

 logger.info("模拟⽣生成淘宝商品base64海海报");

 return encoder.encode(JSON.toJSONString(goodsInfo).getBytes());

 }

}

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

public class DangDangNetMall extends NetMall {

 public DangDangNetMall(String uId, String uPwd) {

 super(uId, uPwd);

 }

 @Override

 public Boolean login(String uId, String uPwd) {

 logger.info("模拟当当⽤用户登录 uId：{} uPwd：{}", uId, uPwd);

 return true;

 }

 @Override

 public Map<String, String> reptile(String skuUrl) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

同上，模拟登录和爬取以及创建图⽚片的 base64

3. 测试验证

3.1 编写测试类

测试类提供了了三个商品链接，也可以是其他商品的链接
爬取的过程模拟爬取京东商品，可以替换为其他商品服务 new JDNetMall、 new

TaoBaoNetMall、 new DangDangNetMall

3.2 测试结果

 String str = HttpClient.doGet(skuUrl);

 Pattern p9 = Pattern.compile("(?<=title\\>).*(?=</title)");

 Matcher m9 = p9.matcher(str);

 Map<String, String> map = new ConcurrentHashMap<String, String>();

 if (m9.find()) {

 map.put("name", m9.group());

 }

 map.put("price", "4548.00");

 logger.info("模拟当当商品爬⾍虫解析：{} | {} 元 {}", map.get("name"),

map.get("price"), skuUrl);

 return map;

 }

 @Override

 public String createBase64(Map<String, String> goodsInfo) {

 BASE64Encoder encoder = new BASE64Encoder();

 logger.info("模拟⽣生成当当商品base64海海报");
 return encoder.encode(JSON.toJSONString(goodsInfo).getBytes());

 }

}

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

/**

 * 测试链接

 * 京东；https://item.jd.com/100008348542.html

 * 淘宝；https://detail.tmall.com/item.htm

 * 当当；http://product.dangdang.com/1509704171.html

 */

@Test

public void test_NetMall() {

 NetMall netMall = new JDNetMall("1000001","*******");

 String base64 =

netMall.generateGoodsPoster("https://item.jd.com/100008348542.html");

 logger.info("测试结果：{}", base64);

}

1

2

3

4

5

6

7

8

9

10

11

12

五、总结

通过上⾯面的实现可以看到模版模式在定义统⼀一结构也就是执⾏行行标准上⾮非常⽅方便便，也就很好的控制

了了后续的实现者不不⽤用关⼼心调⽤用逻辑，按照统⼀一⽅方式执⾏行行。那么类的继承者只需要关⼼心具体的业务逻
辑实现即可。
另外模版模式也是为了了解决⼦子类通⽤用⽅方法，放到⽗父类中设计的优化。让每⼀一个⼦子类只做⼦子类需要完
成的内容，⽽而不不需要关⼼心其他逻辑。这样提取公⽤用代码，⾏行行为由⽗父类管理理，扩展可变部分，也就⾮非
常有利利于开发拓拓展和迭代。
但每⼀一种设计模式都有⾃自⼰己的特定场景，如果超过场景外的建设就需要额外考虑

"

其他模式的运
⽤用。⽽而不不是⾮非要⽣生搬硬套，否则⾃自⼰己不不清楚为什什么这么做，也很难让后续者继续维护代码。⽽而想要
活学活⽤用就需要多加练习，有实践的经历。

23:33:13.616 [main] INFO org.itstack.demo.design.NetMall - 模拟京东⽤用户登录

uId：1000001 uPwd：*******

23:33:15.038 [main] INFO org.itstack.demo.design.NetMall - 模拟京东商品爬⾍虫解

析：【AppleiPhone 11】Apple iPhone 11 (A2223) 128GB ⿊黑⾊色 移动联通电信4G⼿手机 双卡

双待【⾏行行情 报价 价格 评测】-京东 | 5999.00 元

https://item.jd.com/100008348542.html

23:33:15.038 [main] INFO org.itstack.demo.design.NetMall - 模拟⽣生成京东商品

base64海海报

23:33:15.086 [main] INFO org.itstack.demo.design.test.ApiTest - 测试结果：

eyJwcmljZSI6IjU5OTkuMDAiLCJuYW1lIjoi44CQQXBwbGVpUGhvbmUgMTHjgJFBcHBsZSBpUGh

v

bmUgMTEgKEEyMjIzKSAxMjhHQiDpu5HoibIg56e75Yqo6IGU6YCa55S15L+hNEfmiYvmnLog5Y+

M

5Y2h5Y+M5b6F44CQ6KGM5oOFIOaKpeS7tyDku7fmoLwg6K+E5rWL44CRLeS6rOS4nCJ9

Process finished with exit code 0

1

2

3

4

5

6

7

8

⼯工程 描述

itstack-demo-design-22-00 场景模拟⼯工程；模拟学⽣生和⽼老老师信息不不同视⻆角访问

第 10 节：访问者模式

能⼒力力，是你前⾏行行的最⼤大保障

年年龄会不不断的增⻓长，但是什什么才能让你不不慌张。⼀一定是能⼒力力，即使是在⼀一个看似还很安稳的⼯工作中也是
⼀一样，只有拥有能留留下的本事和跳出去的能⼒力力，你才会是安稳的。⽽而能⼒力力的提升是不不断突破⾃自⼰己的未知

也就是拓拓展宽度，以及在专业领域建设个⼈人影响⼒力力也就是深度。如果⽇日复⽇日365天，天天搬砖，⼀一切都
没有变化的重复只能让⼿手上增⻓长点⽼老老茧，岁⽉月⼜又叹⼈人⽣生苦短。

站得⾼高看的远吗？

站得⾼高确实能看得远，也能给⾃自⼰己更更多的追求。但，站的⾼高了了，原本看的清的东⻄西就变得看不不清了了。视
⻆角和重点的不不同，会让我们有很多不不同的选择，⽽而脚踏实地是给⾃自⼰己奠定能攀升起来的基⽯石，当真的可
以四平⼋八稳的⾛走向⼭山头的时候，才是适合看到更更远的时候。

数学好才能学编码吗

往往很多时候学编程的初学者都会问数学不不好能学会吗？其实可以想想那为什什么数学不不好呢？在这条没
学好的路路上，你为它们付出了了多少时间呢？如果⼀一件事情你敢做到和写⾃自⼰己名字⼀一样熟悉，还真的有难
的东⻄西吗。从⼤大学到毕业能写出40万⾏行行代码的，还能愁找不不到⼯工作吗，⽇日积⽉月累，每⼀一天并没有多难。
难的你想⽤用最后⼀一个⽉月的时间学完⼈人家四年年努⼒力力的成绩的。学习，要趁早。

⼀一、开发环境

1. JDK 1.8
2. Idea + Maven
3. 涉及⼯工程三个，可以通过关注公众号： bugstack⾍虫洞洞栈，回复源码下载获取(打开获取的链接，
找到序号18)

⼆二、访问者模式介绍

访问者要解决的核⼼心事项是，在⼀一个稳定的数据结构下，例例如⽤用户信息、雇员信息等，增加易易变的业务
访问逻辑。为了了增强扩展性，将这两部分的业务解耦的⼀一种设计模式。

说⽩白了了访问者模式的核⼼心在于同⼀一个事物不不同视⻆角下的访问信息不不同，⽐比如⼀一个美⼥女女⼿手⾥里里拿个冰激

凌。⼩小朋友会注意冰激凌，⼤大朋友会找⾃自⼰己喜欢的地⽅方观测敌情。

三、案例例场景模拟

https://bugstack.cn/assets/images/qrcode.png

在本案例例中我们模拟校园中的学⽣生和⽼老老师对于不不同⽤用户的访问视⻆角

这个案例例场景我们模拟校园中有学⽣生和⽼老老师两种身份的⽤用户，那么对于家⻓长和校⻓长关⼼心的⻆角度来看，他
们的视⻆角是不不同的。家⻓长更更关⼼心孩⼦子的成绩和⽼老老师的能⼒力力，校⻓长更更关⼼心⽼老老师所在班级学⽣生的⼈人数和升学
率{此处模拟的 }。

那么这样学⽣生和⽼老老师就是⼀一个固定信息的内容，⽽而想让不不同视⻆角的⽤用户获取关⼼心的信息，就⽐比较适合

使⽤用观察者模式来实现，从⽽而让实体与业务解耦，增强扩展性。但观察者模式的整体类结构相对复杂，
需要梳理理清楚再开发

四、访问者模式搭建⼯工程

访问者模式的类结构相对其他设计模式来说⽐比较复杂，但这样的设计模式在我看来更更加烧⽓气有魅⼒力力，它

能阔开你对代码结构的新认知，⽤用这样思维不不断的建设出更更好的代码架构。

关于这个案例例的核⼼心逻辑实现，有以下⼏几点；

1. 建⽴立⽤用户抽象类和抽象访问⽅方法，再由不不同的⽤用户实现；⽼老老师和学⽣生。
2. 建⽴立访问者接⼝口，⽤用于不不同⼈人员的访问操作；校⻓长和家⻓长。
3. 最终是对数据的看板建设，⽤用于实现不不同视⻆角的访问结果输出。

1. ⼯工程结构

访问者模式模型结构

以上是视图展示了了代码的核⼼心结构，主要包括不不同视⻆角下的不不同⽤用户访问模型。

itstack-demo-design-22-00

!"" src
 #"" main
 $!"" java
 $!"" org.itstack.demo.design
 $ #"" user
 $ $ #"" impl
 $ $ $ #"" Student.java
 $ $ $!"" Teacher.java
 $ $!"" User.java
 $ #"" visitor
 $ $ #"" impl
 $ $ $ #"" Parent.java
 $ $ $!"" Principal.java
 $ $!"" Visitor.java
 $!"" DataView.java
 !"" test
 !"" java
 !"" org.itstack.demo.design.test
 !"" ApiTest.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

在这⾥里里有⼀一个关键的点⾮非常重要，也就是整套设计模式的核⼼心组成部分； visitor.visit(this)，这

个⽅方法在每⼀一个⽤用户实现类⾥里里，包括； Student、 Teacher。在以下的实现中可以重点关注。

2. 代码实现

2.1 定义⽤用户抽象类

基础信息包括；姓名、身份、班级，也可以是⼀一个业务⽤用户属性类。
定义抽象核⼼心⽅方法， abstract void accept(Visitor visitor)，这个⽅方法是为了了让后续的⽤用

户具体实现者都能提供出⼀一个访问⽅方法，共外部使⽤用。

2.2 实现⽤用户信息(⽼老老师和学⽣生)

⽼老老师类

// 基础⽤用户信息

public abstract class User {

 public String name; // 姓名
 public String identity; // 身份；重点班、普通班 | 特级教师、普通教师、实习教

师

 public String clazz; // 班级

 public User(String name, String identity, String clazz) {

 this.name = name;

 this.identity = identity;

 this.clazz = clazz;

 }

 // 核⼼心访问⽅方法
 public abstract void accept(Visitor visitor);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public class Teacher extends User {

 public Teacher(String name, String identity, String clazz) {

 super(name, identity, clazz);

 }

 public void accept(Visitor visitor) {

 visitor.visit(this);

 }

 // 升本率

 public double entranceRatio() {

 return BigDecimal.valueOf(Math.random() * 100).setScale(2,

BigDecimal.ROUND_HALF_UP).doubleValue();

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

学⽣生类

这⾥里里实现了了⽼老老师和学⽣生类，都提供了了⽗父类的构造函数。
在 accept⽅方法中，提供了了本地对象的访问； visitor.visit(this)，这块需要加深理理解。

⽼老老师和学⽣生类⼜又都单独提供了了各⾃自的特性⽅方法；升本率(entranceRatio)、排名(ranking)，类
似这样的⽅方法可以按照业务需求进⾏行行扩展。

2.3 定义访问数据接⼝口

访问的接⼝口⽐比较简单，相同的⽅方法名称，不不同的⼊入参⽤用户类型。
让具体的访问者类，在实现时可以关注每⼀一种⽤用户类型的具体访问数据对象，例例如；升学率和排
名。

2.4 实现访问类型(校⻓长和家⻓长)

访问者；校⻓长

}

15

16

public class Student extends User {

 public Student(String name, String identity, String clazz) {

 super(name, identity, clazz);

 }

 public void accept(Visitor visitor) {

 visitor.visit(this);

 }

 public int ranking() {

 return (int) (Math.random() * 100);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public interface Visitor {

 // 访问学⽣生信息

 void visit(Student student);

 // 访问⽼老老师信息

 void visit(Teacher teacher);

}

1

2

3

4

5

6

7

8

9

访问者；家⻓长

以上是两个具体的访问者实现类，他们都有⾃自⼰己的视⻆角需求。
校⻓长关注；学⽣生的名称和班级，⽼老老师对这个班级的升学率
家⻓长关注；⾃自⼰己家孩⼦子的排名，⽼老老师的班级和教学⽔水平

2.5 数据看版

public class Principal implements Visitor {

 private Logger logger = LoggerFactory.getLogger(Principal.class);

 public void visit(Student student) {

 logger.info("学⽣生信息 姓名：{} 班级：{}", student.name,

student.clazz);

 }

 public void visit(Teacher teacher) {

 logger.info("学⽣生信息 姓名：{} 班级：{} 升学率：{}", teacher.name,

teacher.clazz, teacher.entranceRatio());

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

public class Parent implements Visitor {

 private Logger logger = LoggerFactory.getLogger(Parent.class);

 public void visit(Student student) {

 logger.info("学⽣生信息 姓名：{} 班级：{} 排名：{}", student.name,

student.clazz, student.ranking());

 }

 public void visit(Teacher teacher) {

 logger.info("⽼老老师信息 姓名：{} 班级：{} 级别：{}", teacher.name,

teacher.clazz, teacher.identity);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

public class DataView {

 List<User> userList = new ArrayList<User>();

 public DataView() {

 userList.add(new Student("谢⻜飞机", "重点班", "⼀一年年⼀一班"));

 userList.add(new Student("windy", "重点班", "⼀一年年⼀一班"));

 userList.add(new Student("⼤大⽑毛", "普通班", "⼆二年年三班"));

1

2

3

4

5

6

7

8

⾸首先在这个类中初始化了了基本的数据，学⽣生和⽼老老师的信息。
并提供了了⼀一个展示类，通过传⼊入不不同的观察者(校⻓长、家⻓长)⽽而差异化的打印信息。

3. 测试验证

3.1 编写测试类

从测试类可以看到，家⻓长和校⻓长分别是不不同的访问视⻆角。

3.2 测试结果

 userList.add(new Student("Shing", "普通班", "三年年四班"));

 userList.add(new Teacher("BK", "特级教师", "⼀一年年⼀一班"));

 userList.add(new Teacher("娜娜Goddess", "特级教师", "⼀一年年⼀一班"));

 userList.add(new Teacher("dangdang", "普通教师", "⼆二年年三班"));

 userList.add(new Teacher("泽东", "实习教师", "三年年四班"));
 }

 // 展示

 public void show(Visitor visitor) {

 for (User user : userList) {

 user.accept(visitor);

 }

 }

}

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

@Test

public void test(){

 DataView dataView = new DataView();

 logger.info("\r\n家⻓长视⻆角访问：");
 dataView.show(new Parent()); // 家⻓长

 logger.info("\r\n校⻓长视⻆角访问：");

 dataView.show(new Principal()); // 校⻓长

}

1

2

3

4

5

6

7

8

9

10

23:00:39.726 [main] INFO org.itstack.demo.design.test.ApiTest -

家⻓长视⻆角访问：

23:00:39.730 [main] INFO o.i.demo.design.visitor.impl.Parent - 学⽣生信息 姓

名：谢⻜飞机 班级：⼀一年年⼀一班 排名：62

23:00:39.730 [main] INFO o.i.demo.design.visitor.impl.Parent - 学⽣生信息 姓

名：windy 班级：⼀一年年⼀一班 排名：51

23:00:39.730 [main] INFO o.i.demo.design.visitor.impl.Parent - 学⽣生信息 姓

名：⼤大⽑毛 班级：⼆二年年三班 排名：16

23:00:39.730 [main] INFO o.i.demo.design.visitor.impl.Parent - 学⽣生信息 姓
名：Shing 班级：三年年四班 排名：98

1

2

3

4

5

6

通过测试结果可以看到，家⻓长和校⻓长的访问视⻆角同步，数据也是差异化的。
家⻓长视⻆角看到学⽣生的排名；排名：62、排名：51、排名：16、排名：98。

校⻓长视⻆角看到班级升学率；升学率：70.62、升学率：23.15、升学率：70.98、升学率：

90.14。

通过这样的测试结果，可以看到访问者模式的初⼼心和结果，在适合的场景运⽤用合适的模式，⾮非常有
利利于程序开发。

五、总结

从以上的业务场景中可以看到，在嵌⼊入访问者模式后，可以让整个⼯工程结构变得容易易添加和修改。
也就做到了了系统服务之间的解耦，不不⾄至于为了了不不同类型信息的访问⽽而增加很多多余的 if判断或者

类的强制转换。也就是通过这样的设计模式⽽而让代码结构更更加清晰。
另外在实现的过程可能你可能也发现了了，定义抽象类的时候还需要等待访问者接⼝口的定义，这样的
设计⾸首先从实现上会让代码的组织变得有些难度。另外从设计模式原则的⻆角度来看，违背了了迪⽶米特
原则，也就是最少知道原则。因此在使⽤用上⼀一定要符合场景的运⽤用，以及提取这部分设计思想的精
髓。
好的学习⽅方式才好更更容易易接受知识，学习编程的更更需要的不不单单是看，⽽而是操作。⼆二⼗十多种设计模
式每⼀一种都有⾃自⼰己的设计技巧，也可以说是巧妙之处，这些巧妙的地⽅方往往是解决复杂难题的最佳
视⻆角。亲⼒力力亲为，才能为所欲为，为了了⾃自⼰己的欲望⽽而努⼒力力！

23:00:39.730 [main] INFO o.i.demo.design.visitor.impl.Parent - ⽼老老师信息 姓

名：BK 班级：⼀一年年⼀一班 级别：特级教师
23:00:39.730 [main] INFO o.i.demo.design.visitor.impl.Parent - ⽼老老师信息 姓

名：娜娜Goddess 班级：⼀一年年⼀一班 级别：特级教师

23:00:39.730 [main] INFO o.i.demo.design.visitor.impl.Parent - ⽼老老师信息 姓

名：dangdang 班级：⼆二年年三班 级别：普通教师

23:00:39.730 [main] INFO o.i.demo.design.visitor.impl.Parent - ⽼老老师信息 姓

名：泽东 班级：三年年四班 级别：实习教师
23:00:39.730 [main] INFO org.itstack.demo.design.test.ApiTest -

校⻓长视⻆角访问：

23:00:39.731 [main] INFO o.i.d.design.visitor.impl.Principal - 学⽣生信息 姓

名：谢⻜飞机 班级：⼀一年年⼀一班

23:00:39.731 [main] INFO o.i.d.design.visitor.impl.Principal - 学⽣生信息 姓
名：windy 班级：⼀一年年⼀一班

23:00:39.731 [main] INFO o.i.d.design.visitor.impl.Principal - 学⽣生信息 姓

名：⼤大⽑毛 班级：⼆二年年三班

23:00:39.731 [main] INFO o.i.d.design.visitor.impl.Principal - 学⽣生信息 姓

名：Shing 班级：三年年四班

23:00:39.733 [main] INFO o.i.d.design.visitor.impl.Principal - 学⽣生信息 姓
名：BK 班级：⼀一年年⼀一班 升学率：70.62

23:00:39.733 [main] INFO o.i.d.design.visitor.impl.Principal - 学⽣生信息 姓

名：娜娜Goddess 班级：⼀一年年⼀一班 升学率：23.15

23:00:39.734 [main] INFO o.i.d.design.visitor.impl.Principal - 学⽣生信息 姓

名：dangdang 班级：⼆二年年三班 升学率：70.98
23:00:39.734 [main] INFO o.i.d.design.visitor.impl.Principal - 学⽣生信息 姓

名：泽东 班级：三年年四班 升学率：90.14

Process finished with exit code 0

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

结尾
截⽌止到此设计模式内容就全部讲完了了，可能书中会因作者⽔水平有限，有⼀一些描述不不准确或者错字内容。
欢迎提交给我，也欢迎和我讨论相关的技术内容，作者⼩小傅哥，⾮非常愿意与同好进⾏行行交流，互相提升技
术。

	前言
	作者
	我的技术站👣
	 与我联系
	友情打赏🍗

	源码
	目录
	1. 创建型模式
	2. 结构型模式
	3. 行为模式

	创建者模式(5节)
	第 1 节：工厂方法模式
	一、开发环境
	二、工厂方法模式介绍
	三、模拟发奖多种商品
	四、用一坨坨代码实现
	1. 工程结构
	2. ifelse实现需求
	3. 测试验证

	五、工厂模式优化代码
	1. 工程结构
	2. 代码实现
	2.1 定义发奖接口
	2.2 实现奖品发放接口
	2.3 创建商店工厂

	3. 测试验证

	六、总结

	第 2 节：抽象工厂模式
	一、开发环境
	二、抽象工厂模式介绍
	三、案例场景模拟
	1. 场景模拟工程
	2. 场景简述
	2.1 模拟单机服务 RedisUtils
	2.2 模拟集群 EGM
	2.3 模拟集群 IIR

	3. 单集群代码使用
	3.1 定义使用接口
	3.2 实现调用代码

	四、用一坨坨代码实现
	1. 工程结构
	2. ifelse实现需求
	3. 测试验证

	五、抽象工厂模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 定义适配接口
	2.2 实现集群使用服务
	2.3 定义抽象工程代理类和实现

	3. 测试验证

	六、总结

	第 3 节：建造者模式
	一、开发环境
	二、建造者模式介绍
	三、案例场景模拟
	1. 场景模拟工程
	2. 场景简述
	2.1 物料接口
	2.2 吊顶(ceiling)
	2.3 涂料(coat)
	2.4 地板(floor)
	2.5 地砖(tile)

	四、用一坨坨代码实现
	1. 工程结构
	2. ifelse实现需求
	3. 测试验证

	五、建造者模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 定义装修包接口

	2.2 装修包实现
	2.3 建造者方法

	3. 测试验证

	六、总结

	第 4 节：原型模式
	一、开发环境
	二、原型模式介绍
	三、案例场景模拟
	1. 场景模拟工程
	2. 场景简述
	2.1 选择题
	2.2 问答题

	四、用一坨坨代码实现
	1. 工程结构
	2. 一把梭实现需求
	3. 测试验证

	五、原型模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 题目选项乱序操作工具包
	2.2 克隆对象处理类
	2.4 初始化试卷数据

	3. 测试验证

	六、总结

	第 5 节：单例模式
	一、开发环境
	二、单例模式介绍
	三、案例场景
	四、7种单例模式实现
	0. 静态类使用
	1. 懒汉模式(线程不安全)
	2. 懒汉模式(线程安全)
	3. 饿汉模式(线程安全)
	4. 使用类的内部类(线程安全)
	5. 双重锁校验(线程安全)
	6. CAS「AtomicReference」(线程安全)
	7. Effective Java作者推荐的枚举单例(线程安全)

	五、总结

	结构型模式(7节)
	第 1 节：适配器模式
	一、开发环境
	二、适配器模式介绍
	三、案例场景模拟
	1. 场景模拟工程
	2. 场景简述
	1.1 注册开户MQ
	1.2 内部订单MQ
	1.3 第三方订单MQ
	1.4 查询用户内部下单数量接口
	1.5 查询用户第三方下单首单接口

	四、用一坨坨代码实现
	1. 工程结构
	2. Mq接收消息实现

	五、适配器模式重构代码
	1. 工程结构
	2. 代码实现(MQ消息适配)
	2.1 统一的MQ消息体
	2.2 MQ消息体适配类
	2.3 测试适配类
	2.3.1 编写单元测试类
	2.3.2 测试结果

	3. 代码实现(接口使用适配)
	3.1 定义统一适配接口
	3.2 分别实现两个不同的接口
	3.3 测试适配类
	3.3.1 编写单元测试类
	3.3.2 测试结果

	六、总结

	第 2 节：桥接模式
	一、开发环境
	二、桥接模式介绍
	三、案例场景模拟
	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现
	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、桥接模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 支付类型桥接抽象类
	2.2 两个支付类型的实现
	2.3 定义支付模式接口
	2.4 三种支付模式风控(刷脸、指纹、密码)

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	六、总结

	第 3 节：组合模式
	一、开发环境
	二、组合模式介绍
	三、案例场景模拟
	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现
	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、组合模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 基础对象
	2.2 树节点逻辑过滤器接口
	2.3 决策抽象类提供基础服务
	2.4 树节点逻辑实现类
	2.5 决策引擎接口定义
	2.6 决策节点配置
	2.7 基础决策引擎功能
	2.8 决策引擎的实现

	3. 测试验证
	3.1 组装树关系
	3.2 编写测试类
	3.3 测试结果

	六、总结

	第 4 节：装饰器模式
	一、开发环境
	二、装饰器模式介绍
	三、案例场景模拟
	1. 场景模拟工程
	2. 场景简述
	2.1 模拟Spring的HandlerInterceptor
	2.2 模拟单点登录功能

	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现
	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、装饰器模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 抽象类装饰角色
	2.2 装饰角色逻辑实现

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	六、总结

	第 5 节：外观模式
	一、开发环境
	二、外观模式介绍
	三、案例场景模拟
	1. 场景模拟工程
	2. 场景简述
	2.1 定义基础查询接口
	2.2 设置Application启动类

	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现

	五、外观模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 配置服务类
	2.2 配置类注解定义
	2.3 自定义配置类信息获取
	2.4 切面注解定义
	2.5 白名单切面逻辑

	3. 测试验证
	3.1 引入中间件POM配置
	3.2 配置application.yml
	3.3 在Controller中添加自定义注解
	3.4 启动SpringBoot
	3.5 访问接口接口测试

	六、总结

	第 6 节：享元模式
	一、开发环境
	二、享元模式介绍
	三、案例场景模拟
	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现

	五、享元模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 活动信息
	2.2 库存信息
	2.3 享元工厂
	2.4 模拟Redis类
	2.4 活动控制类

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	六、总结

	第 7 节：代理模式
	一、开发环境
	二、代理模式介绍
	三、案例场景模拟
	四、代理类模式实现过程
	1. 工程结构
	2. 代码实现
	2.1 自定义注解
	2.2 Dao层接口
	2.3 代理类定义
	2.4 将Bean定义注册到Spring容器
	2.5 配置文件spring-config

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、总结

	行为模式(10节)
	第 1 节：责任链模式
	一、开发环境
	二、责任链模式介绍
	三、案例场景模拟
	1. 场景模拟工程
	2. 场景简述
	2.1 模拟审核服务

	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现
	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、责任链模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 责任链中返回对象定义
	2.2 链路抽象类定义
	2.3 三个审核实现类

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	六、总结

	第 2 节：命令模式
	一、开发环境
	二、命令模式介绍
	三、案例场景模拟
	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现

	五、命令模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 抽象命令定义(菜品接口)
	2.2 具体命令实现(四种菜品)
	2.3 抽象实现者定义(厨师接口)
	2.4 实现者具体实现(四类厨师)
	2.5 调用者(小二)

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	六、总结

	第 3 节：迭代器模式
	一、开发环境
	二、迭代器模式介绍
	三、案例场景模拟
	四、迭代器模式遍历组织结构
	1. 工程结构
	2. 代码实现
	2.1 雇员实体类
	2.2 树节点链路
	2.3 迭代器定义
	2.4 可迭代接口定义
	2.5 集合功能接口定义
	2.6 (核心)迭代器功能实现

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、总结

	第 4 节：中介者模式
	一、开发环境
	二、中介者模式介绍
	三、案例场景模拟
	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现
	3. 测试结果

	五、中介模式开发ORM框架
	1. 工程结构
	2. 代码实现
	2.1 定义SqlSession接口
	2.2 SqlSession具体实现类
	2.3 定义SqlSessionFactory接口
	2.4 SqlSessionFactory具体实现类
	2.5 SqlSessionFactoryBuilder实现

	3. 测试验证
	3.1 创建数据库对象类
	3.2 创建DAO包
	3.3 ORM配置文件
	3.4 单个结果查询测试
	3.5 集合结果查询测试

	六、总结

	第 5 节：备忘录模式
	一、开发环境
	二、备忘录模式介绍
	三、案例场景模拟
	四、备忘录模式记录配置文件版本信息
	1. 工程结构
	2. 代码实现
	2.1 配置信息类
	2.2 备忘录类
	2.3 记录者类
	2.4 管理员类

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、总结

	第 6 节：观察者模式
	一、开发环境
	二、观察者模式介绍
	三、案例场景模拟
	1. 场景模拟工程
	2. 场景简述
	2.1 摇号服务接口

	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现
	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、观察者模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 事件监听接口定义
	2.2 两个监听事件的实现
	2.3 事件处理类
	2.4 业务抽象类接口
	2.5 业务接口实现类

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	六、总结

	第 7 节：状态模式
	一、开发环境
	二、状态模式介绍
	三、案例场景模拟
	1. 场景模拟工程
	2. 代码实现
	2.1 基本活动信息
	2.2 活动枚举状态
	2.3 活动服务接口

	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现
	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、状态模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 定义状态抽象类
	2.2 部分状态流转实现
	2.3 状态处理服务

	3. 测试验证
	3.1 编写测试类(Editing2Arraignment)
	3.2 编写测试类(Editing2Open)
	3.3 编写测试类(Refuse2Doing)
	3.4 编写测试类(Refuse2Revoke)

	六、总结

	第 8 节：策略模式
	一、开发环境
	二、策略模式介绍
	三、案例场景模拟
	四、用一坨坨代码实现
	1. 工程结构
	2. 代码实现

	五、策略模式重构代码
	1. 工程结构
	2. 代码实现
	2.1 优惠券接口
	2.2 优惠券接口实现
	2.3 策略控制类

	3. 测试验证
	3.1 编写测试类(直减优惠)
	3.2 编写测试类(满减优惠)
	3.3 编写测试类(折扣优惠)
	3.4 编写测试类(n元购优惠)

	六、总结

	第 9 节：模板模式
	一、开发环境
	二、模版模式介绍
	三、案例场景模拟
	四、模版模式搭建工程
	1. 工程结构
	2. 代码实现
	2.1 定义执行顺序的抽象类
	2.2 模拟爬虫京东
	2.3 模拟爬虫淘宝
	2.4 模拟爬虫当当

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、总结

	第 10 节：访问者模式
	一、开发环境
	二、访问者模式介绍
	三、案例场景模拟
	四、访问者模式搭建工程
	1. 工程结构
	2. 代码实现
	2.1 定义用户抽象类
	2.2 实现用户信息(老师和学生)
	2.3 定义访问数据接口
	2.4 实现访问类型(校长和家长)
	2.5 数据看版

	3. 测试验证
	3.1 编写测试类
	3.2 测试结果

	五、总结

	结尾

