36 1 Vol 36.Na 1
2017 6 Computing Technology and Automation Jun. 2017

:1003—6199(2017)02—0136—05

(s 712000)

JDBC s : N
JDBC , , o

3 3 ;JDBC
:TP311. 1 tA

DOI:10.16339/j..cnki jsjsyzdh.2017.02.029

Research and Implementation of Factory Design Pattern

GE Meng, OUYANG Hong-ji
(Computer College, Xianyang Normal University, Xianyang, Shaanxi 712000, China)

Abstract; In order to improve the reusability of the traditional JDBC framework, this paper analyzes three concrete
forms of the factory design pattern, which are simple factory,factory method and abstract factory. expounds the advantages
and disadvantages of the three,the transformation relationship between the three is analyzed from two aspects of evolution
and degradation.designs a data persistence layer model with combining factory design pattern and JDBC, gives the design idea
and some core codes of the model. Through the correlation analysis and test.it is indicated that the factory design pattern can
be applied to the design of persistent layer, which can reduce the redundancy of the code,improve the reusability and expansi-
bility.

Key words: simple factory;factory method;abstract factory; JDBC

, JDBC Java EE

’

b b b
“ ”» “
b b b
”
b b o
o ’
’ 1
b o
N L1
(1
’ : A}
:2016—07—29
: (14XSYK038)
(1980,) . : .

T ,E-mail:oyhj nicholas@163.com

L2

138

2017 6

2 Java EE
Java EE
[8] .
; SQL
: JDBC. ORM (
Hibernate) . ORM(MyBatis)
JDO JDBC SQL
JDBC
21
,Java EE DAO .
DAO
,DAO
[9] B
s DAO
; SQL“ 99 ,
SQL ,
DAO
DAO o
MySQL s
public interfaceDAOFactory
{ // DAO
UserDAO createUserDAOQ) ;

DepartmentDAOQO createDepartmentDAOQ)

classMySQLDAOFactory
implements DAOFactory

{
public UserDAO createUserDAOQO {
return new MySQLUserDAOImpQ) ;

public

}

publicDepartmentDAO
createDepartmentDAO(Q) {

return new MySQLDepartmentDAOImpQ) ;

}

}
22
JDBC 4 O (D
;(2) Connection; (3) Statement
SQL s (4) o
) JDBCUtil
(L2 W,
, JDBCUtilFactory
, JDB-
CUtil JDBCUtilFactory ,

o ’

public classMySQLJDBCUtil extends JDB-
CUtil
{ static{

Class.forName (" com. mysql. jdbc. Driver") ;

ceee, }
public ConnectiongetConnection () throws
SQLException{
return DriverManager. getConnection (" jdbc:
mysql://localhost: 3306/dbName ",” root ”,”
root”);

}

public classMySQLJDBCUtilFactory imple-
ments JDBCUtilFactory

{

public] DBCUHtil create]DBCUtil() {

return new MySQLJDBCUtil() ;

}

}
23

2.3

JDBC
URL o

Connection

36 2

139

’ o

s -JDBCConfi-
gReader, Properties ,
properties . properties
<K,V> o
JDBCConfigReader .

’ o

public classJDBCUHtil

{ static{

Class. (JDBCConfigReader.
getInstance (). getProperties (). getProperty ("
DriverClass") ;

}

public ConnectiongetConnection () throws
SQLException{

String url = JDBCConfigReader. getInstance
().getProperties().getProperty(" DBURL") ;

String userName = JDBCConfigReader. getIn-

forName

stance(). getProperties (). getProperty (" DBUser-
Name") ;

String password = JDBCConfigReader. getIn-
stance (). getProperties (). getProperty (" DBPass-
word") ;

return DriverManager. getConnection Curl,

userName, password) ;

I

publicclass JDBCUftilFactory

{

public static JDBCU'til create] DBCUtl() {
return new]DBCUtHIO ;5 }

2.3 :
JDBC .

2. 4
User,

DAO :
public classMySQLUserDAOImp
implements UserDAO

{
// JDBCUtil JDBCUtil
private] DBCUtil jdbcUtil = new JDBCUtil-
Factory().create]DBCUtl()
//
publicboolean addUser(User user)
{

Connection con=jdbcUtil.getConnection() ;

DAO

DAO)

public classDAOFactory

{
public staticDAOFactory

getDAOFactory()
{ DAOFactory factory=null;
String DAOFactoryName =

JDBCConfigReader. getInstance (). getProperties
(). getProperty (" DAOFactory”); factory =

(DAOFactory) Class. forName
(DAOFactoryName).newlInstance() ; }
return factory;
.
DAO ,

DAOFactory factory = DAOFactoryConfig.
getDAOFactory() ;

UserDAO userDAO = factory. getUserDAO
O3

DAO , DAO
DAO DAO,
DAO o
DAO

o DAO

DAO

140

2017 6

<<interface>>
DaoFactory

+ createUserDeo() : UserDeo
+ createDepartmentDao() : DepartmentDao

JDBCUtilFactory

- attnbute0 - int

K

R\

+ getConnection() - Connection

MySQLDaoFactory | | saLserverDaoFactory |
{

.

aNY

JDBCConfig

DaoConfigFactory

- properties - Properties

O MySQLU: p

+ getDaoFactory() DaoFactory

<<interface>>
UserDao

25

DAO,
JUnit

"2 - utl JOBCConfig

perty() - Properties

JDBCULil

+ close() * void

+ getConnection()() - Connection

P AT B

JDBC

DAO
JDK

Executor

(

JDBC

’
’ o
, JDBC
o b
b b
b Y
2
JDBC 65 20 30%
133 58 43%
3
(:) (s)
JDBC 0.345S 0.165S
0.355S 0.115S

Ext]s [l
65—69.

[2]) .

JDBC

SSH +
+2015,44(3) :

3

[J]. ,2009,33(3):112—115.

[3] .
(1.
2015,35(4) ;58— 62.
(4] . 0l
(12):15—17.
[5] . ,

,2014,29(6) :43—46.

(6] . 0.
(2):82—86.

L7] . [M].

(8]

, 2010, 26

(.

,2014,35

,2011:92—103.

L.

,2008,10(6) :18—111.

[9] , DAO

03
—113.

[10] . .

L.

JDBC

,2006,28(10) ;111

,2011,21(1):84—87.

