1
This commit is contained in:
43
prisma/services/deepThink/expert.ts
Normal file
43
prisma/services/deepThink/expert.ts
Normal file
@@ -0,0 +1,43 @@
|
||||
import { ModelOption, ExpertResult } from '../../types';
|
||||
import { getExpertSystemInstruction } from './prompts';
|
||||
|
||||
export const streamExpertResponse = async (
|
||||
ai: any,
|
||||
model: ModelOption,
|
||||
expert: ExpertResult,
|
||||
context: string,
|
||||
budget: number,
|
||||
signal: AbortSignal,
|
||||
onChunk: (text: string, thought: string) => void
|
||||
): Promise<void> => {
|
||||
const streamResult = await ai.models.generateContentStream({
|
||||
model: model,
|
||||
contents: expert.prompt,
|
||||
config: {
|
||||
systemInstruction: getExpertSystemInstruction(expert.role, expert.description, context),
|
||||
temperature: expert.temperature,
|
||||
thinkingConfig: {
|
||||
thinkingBudget: budget,
|
||||
includeThoughts: true
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
for await (const chunk of streamResult) {
|
||||
if (signal.aborted) break;
|
||||
|
||||
let chunkText = "";
|
||||
let chunkThought = "";
|
||||
|
||||
if (chunk.candidates?.[0]?.content?.parts) {
|
||||
for (const part of chunk.candidates[0].content.parts) {
|
||||
if (part.thought) {
|
||||
chunkThought += (part.text || "");
|
||||
} else if (part.text) {
|
||||
chunkText += part.text;
|
||||
}
|
||||
}
|
||||
onChunk(chunkText, chunkThought);
|
||||
}
|
||||
}
|
||||
};
|
||||
61
prisma/services/deepThink/manager.ts
Normal file
61
prisma/services/deepThink/manager.ts
Normal file
@@ -0,0 +1,61 @@
|
||||
import { Type } from "@google/genai";
|
||||
import { ModelOption, AnalysisResult } from '../../types';
|
||||
import { cleanJsonString } from '../../utils';
|
||||
import { MANAGER_SYSTEM_PROMPT } from './prompts';
|
||||
|
||||
export const executeManagerAnalysis = async (
|
||||
ai: any,
|
||||
model: ModelOption,
|
||||
query: string,
|
||||
context: string,
|
||||
budget: number
|
||||
): Promise<AnalysisResult> => {
|
||||
const managerSchema = {
|
||||
type: Type.OBJECT,
|
||||
properties: {
|
||||
thought_process: { type: Type.STRING, description: "Brief explanation of why these supplementary experts were chosen." },
|
||||
experts: {
|
||||
type: Type.ARRAY,
|
||||
items: {
|
||||
type: Type.OBJECT,
|
||||
properties: {
|
||||
role: { type: Type.STRING },
|
||||
description: { type: Type.STRING },
|
||||
temperature: { type: Type.NUMBER },
|
||||
prompt: { type: Type.STRING }
|
||||
},
|
||||
required: ["role", "description", "temperature", "prompt"]
|
||||
}
|
||||
}
|
||||
},
|
||||
required: ["thought_process", "experts"]
|
||||
};
|
||||
|
||||
const analysisResp = await ai.models.generateContent({
|
||||
model: model,
|
||||
contents: `Context:\n${context}\n\nCurrent Query: "${query}"`,
|
||||
config: {
|
||||
systemInstruction: MANAGER_SYSTEM_PROMPT,
|
||||
responseMimeType: "application/json",
|
||||
responseSchema: managerSchema,
|
||||
thinkingConfig: {
|
||||
includeThoughts: true,
|
||||
thinkingBudget: budget
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
const rawText = analysisResp.text || '{}';
|
||||
const cleanText = cleanJsonString(rawText);
|
||||
|
||||
try {
|
||||
const analysisJson = JSON.parse(cleanText) as AnalysisResult;
|
||||
if (!analysisJson.experts || !Array.isArray(analysisJson.experts)) {
|
||||
throw new Error("Invalid schema structure");
|
||||
}
|
||||
return analysisJson;
|
||||
} catch (e) {
|
||||
console.error("JSON Parse Error:", e, rawText);
|
||||
return { thought_process: "Direct processing.", experts: [] };
|
||||
}
|
||||
};
|
||||
34
prisma/services/deepThink/prompts.ts
Normal file
34
prisma/services/deepThink/prompts.ts
Normal file
@@ -0,0 +1,34 @@
|
||||
import { ExpertResult } from '../../types';
|
||||
|
||||
export const MANAGER_SYSTEM_PROMPT = `
|
||||
You are the "Dynamic Planning Engine". Your goal is to analyze a user query (considering the conversation context) and decompose it into a set of specialized expert personas (2 to 4) who can collaboratively solve specific aspects of the problem.
|
||||
|
||||
Your job is to create SUPPLEMENTARY experts to aid the Primary Responder.
|
||||
DO NOT create an expert that just repeats the user query. The Primary Responder is already doing that.
|
||||
Focus on specialized angles: specific coding patterns, historical context, devil's advocate, security analyst, etc.
|
||||
|
||||
For each expert, you must assign a specific 'temperature' (0.0 to 2.0).
|
||||
`;
|
||||
|
||||
export const getExpertSystemInstruction = (role: string, description: string, context: string) => {
|
||||
return `You are a ${role}. ${description}. Context: ${context}`;
|
||||
};
|
||||
|
||||
export const getSynthesisPrompt = (recentHistory: string, query: string, expertResults: ExpertResult[]) => {
|
||||
return `
|
||||
You are the "Synthesis Engine".
|
||||
|
||||
Context:
|
||||
${recentHistory}
|
||||
|
||||
Original User Query: "${query}"
|
||||
|
||||
Here are the analyses from your expert panel:
|
||||
${expertResults.map(e => `--- Expert: ${e.role} (Temp: ${e.temperature}) ---\n${e.content || "(No output)"}\n`).join('\n')}
|
||||
|
||||
Your Task:
|
||||
1. Reflect on the experts' inputs. Identify conflicts and consensus.
|
||||
2. Synthesize a final, comprehensive, and high-quality answer to the user's original query.
|
||||
3. Do not simply summarize; integrate the knowledge into a cohesive response.
|
||||
`;
|
||||
};
|
||||
44
prisma/services/deepThink/synthesis.ts
Normal file
44
prisma/services/deepThink/synthesis.ts
Normal file
@@ -0,0 +1,44 @@
|
||||
import { ModelOption, ExpertResult } from '../../types';
|
||||
import { getSynthesisPrompt } from './prompts';
|
||||
|
||||
export const streamSynthesisResponse = async (
|
||||
ai: any,
|
||||
model: ModelOption,
|
||||
query: string,
|
||||
historyContext: string,
|
||||
expertResults: ExpertResult[],
|
||||
budget: number,
|
||||
signal: AbortSignal,
|
||||
onChunk: (text: string, thought: string) => void
|
||||
): Promise<void> => {
|
||||
const prompt = getSynthesisPrompt(historyContext, query, expertResults);
|
||||
|
||||
const synthesisStream = await ai.models.generateContentStream({
|
||||
model: model,
|
||||
contents: prompt,
|
||||
config: {
|
||||
thinkingConfig: {
|
||||
thinkingBudget: budget,
|
||||
includeThoughts: true
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
for await (const chunk of synthesisStream) {
|
||||
if (signal.aborted) break;
|
||||
|
||||
let chunkText = "";
|
||||
let chunkThought = "";
|
||||
|
||||
if (chunk.candidates?.[0]?.content?.parts) {
|
||||
for (const part of chunk.candidates[0].content.parts) {
|
||||
if (part.thought) {
|
||||
chunkThought += (part.text || "");
|
||||
} else if (part.text) {
|
||||
chunkText += part.text;
|
||||
}
|
||||
}
|
||||
onChunk(chunkText, chunkThought);
|
||||
}
|
||||
}
|
||||
};
|
||||
Reference in New Issue
Block a user